
NOVEMBER 1995 Delphi INFORMANT ▲ 1

ON THE COVER

8 Think Objects, Not Reuse — Richard Wagner
Code reuse is talked about a great deal, but seldom put
into practice. Mr Wagner gets this month’s issue off to a
quick start by describing the contradictory disciplines of
rapid application development and code reuse. He then
goes on to resolve this dilemma through the use of inheri-
tance and polymorphism. And manages to make it simple!

13 Power and Safety — John O’Connell
Using Delphi’s powerful new Object Pascal language, we
can create object-oriented programs that go head-to-head
with anything created in C++. But Mr O’Connell wants us
to slow down a bit and appreciate some robust language
features that Pascal has had since its inception: subranges,
enumerated types, and sets.

21 Cultural Differences — Richard Holmes
C++ and Object Pascal have a lot in common. For exam-
ple, they’re both OO hybrids of classic 3GL languages. And
when it comes to raw power and capability, there is also
little to separate them. Yet there are some important dif-
ferences as well. Mr Holmes dissects the two languages
and provides us with an extraordinarily detailed — and
fascinating — comparison.

FEATURES

26 DBNavigator — Cary Jensen, Ph.D.
You’ve probably used the Table, DataSource, and Query
components extensively (especially if you’ve followed this
column). But what about the BatchMove component that
shares the same Data Access page on the Component
Palette? Chances are you haven’t touched it — until now.
In this month’s DBNavigator, Dr Jensen shows us the many
important tasks BatchMove can perform.

November 1995 - Volume 1, Number 7

Cover Art By: Michael Tanamachi

30 Visual Programming — Douglas Horn
Delphi’s ObjectBrowser can provide unparalleled insight into
the inner workings of Delphi and Windows. Unfortunately,
its use is next-to-undocumented. This month, Mr Horn helps
reveal the ObjectBrowser for the incredibly useful instrument
that it is. It’s a comprehensive introduction and visual tour
of a tool you should become familiar with.

34 Informant Spotlight — Tom Costanza
The issues and protocols of serial communications are nearly
as old as computers. In fact, in many respects, little has
changed. And when Delphi is added to the mix, an interest-
ing juxtaposition of old and new is created. From the middle
of it all, Mr Costanza provides us with an outstanding intro-
duction to serial communications and a Delphi implementa-
tion.

REVIEWS

42 RAD Pack for Delphi — Product review by Tim Feldman
Shortly after shipping Delphi, Borland issued an accompanying
“RAD Pack” product. But just what is the RAD Pack? What
does it contain? And what about the quality of those contents?
It’s not perfect, as Mr Feldman explains, but may contain
some key tools for your Delphi development environment.

47 Delphi Developer’s Guide
Book review by Tim Feldman

48 Mastering Delphi
Book review by Larry Clark

48 Delphi: A Developer’s Guide
Book review by Richard Wagner

DEPARTMENTS
2 Editorial
4 Delphi Tools
6 Newsline

Object Pascal

the Language

Comparisons and Reveries

Symposium

“I never think of the future. It comes soon enough.”

— Albert Einstein
A s we move too quickly into Camus’ cool breeze from the future, I thought it might be a good idea to
revisit some recurring themes surrounding Delphi Informant and its readers. With due respect to Dr

Einstein, I’d like to keep us in sync. And that necessitates some planning, no matter how rudimentary.
So who reads DI? You come from
diverse programming backgrounds —
most notably Pascal, C/C++, Visual
Basic, and Paradox for Windows. This
letter is from a VB programmer:

Dear Editor;
One of the great things about Visual
Basic is the attitude of the authors and
programmers; There is none of the
‘I’m smarter than the idiot that
wrote...’ letters that we see so often in
the C++ magazines; When a VB
author publishes stupid code, the
other authors correct it with ‘That’s
great, but maybe you should do it this
way...”; I hope {and I am sure others
will join me} that the Delphi commu-
nity will continue with this supportive
attitude; I thank your magazine for
helping me make the transition from
VB to Delphi; The only hard part has
been to remember to end each state-
ment with a damned semicolon;
Regards;
Dennis Pipes;

Yes, thankfully, I’ve yet to see the kind
of acrimony that can become the “per-
sonality” of a programming language
community. (A friend of mine once
described a C++ forum he frequented as
a “snake pit.”) And there’s that word —
community. This may not be the first
time I’ve seen the phrase “Delphi com-
NOVEMBER 1995
munity,” but it’s the first time I’ve been
struck by it. To observe that our profes-
sion changes quickly is passé, itself an
indication of just how quickly things are
moving. Still, it’s remarkable that there
is already a genuine community for this
young product. The Borland and
Informant CompuServe forums (GO
DELPHI and GO ICGFORUM
respectively) are evidence. And I heartily
agree, Dennis — let’s keep it friendly.
Then there’s your artful punctuation —
too clever by half Mr Pipes.

Having shared the “snake pit” com-
ment, I hasten to add that those from
the C++ community I’ve run across
have been perfectly civil, thank you.
Take for example, this letter from
down under:

Dear Mr Coffey:
... Do we need more articles that
address Object Pascal basics?
Probably; I’d appreciate something
above the ‘elementary’ level that fills
the big gap Borland left in explaining
their component hierarchy. That may
be in their Component Writer’s Guide,
but I haven’t been able to get my
hands on a copy yet!!
Do we want fewer database related arti-
cles? YES! although a couple on inter-
facing Delphi to dBASE and C++ would
be welcome. ...
I’m not coming over from VB — never
went there. I am using C++.
Make sure that as far as possible,
and appropriate, each article leaves
us with real, self-contained, working
examples. ...
This is the most expensive program-
ming magazine I subscribe to. I hope
I resubscribe. That will depend on
how I perceive its value, i.e. how
much I learn from it. I certainly hope
Delphi is a real success and I hope
your magazine is too.
Regards, Fred Browne

Thanks for the great letter Fred. Your
good wishes are very much appreciated
and I hope we merit your patronage.

Change and its pace are also ineluctable
themes of this business. And with the
development landscape changing so
rapidly, it’s vital that DI be responsive
and continue to serve your interests.
What I’m hearing from you to-date is
“So far, so good,” but keep the com-
ments coming. This message from Mr
Rice is representative:

Dear Jerry:
... in reply to your appeal for what
we would like to see in the
Informant, for my money, you’re
already right on track. ... For the rest
of us who slog out commercial code
Delphi INFORMANT ▲ 2

Symposium
for a living, the salient points of your
magazine come through loud and
clear. Much more of a beginner’s
bent, and you would lose some of us.
However, the same goes for the
other (guru) extreme. Most of us
who are using Delphi are new to
the product (but not necessarily
OOP) because it just hasn’t been on
the market long enough to produce
many experts ...
Sincerely,
David L. Rice

Thanks for the words of encouragement
David. We’ll continue to carefully ply a
course between the neophyte and guru
extremes.

And here’s a letter that made my week:

Jerry:
As a long time Paradox Informant
subscriber and new DI subscriber, I've
grown accustomed to the layout,
style and content of the Informant
magazines. One thing is clear with
regard to the question of technical
content -- if you can't use it or com-
pletely understand it today, give
yourself some time in the Delphi
environment then re-read the arti-
cles. I've found at first pass I might
be interested in using (or bothering
to understand) snippets from 25-50%
of the content, but on second pass
(after heading up the learning curve)
I end up "stealing" a good 80% or
more of the ideas presented.

In what amounts to a one-person
programming shop, the Informant
magazines and CompuServe forums
have "saved me" many times over,
either from going down a dead-end
path or allowing me to develop that
much faster. As well, I've taken the
time to contact the authors (giving
fair opportunity to ignore me if too
busy) to discuss/trade thoughts -- all-
in-all, a very helpful, understanding
group. Thanks for a fine magazine --
NOVEMBER 1995
consider my subscription an invest-
ment in your efforts!
Paul Jordan

Thank you Paul! You have succinctly
described Delphi Informant’s raison
d’être. Surveys have shown us that most
Paradox Informant readers keep their
magazines indefinitely and use them as
reference. Our goal is to achieve the
same with DI.

And now to one of my favorite topics
— books. This month’s issue closes with
three book reviews that I’ve been impa-
tient to read, and to share with you.
Unfortunately it takes months to get
these reviews into your hands. I’ve been
especially impatient since, as Tim
Feldman mentions in his review of
Pacheco and Teixeira’s Delphi Developer’s
Guide [Sams, 1995], we’re now well into
the “second wave” of third-party Delphi
guides; books that took longer to get to
press, but are more comprehensive and
offer deeper insights into the product.
The two other books reviewed in this
issue are Marco Cantù’s Mastering
Delphi [Sybex, 1995], and Todd and
Kellen’s Delphi: A Developer’s Guide
[M&T, 1995].

These are three of what I think are the
five must-have Delphi books available as
of this early October writing. The oth-
ers are Neil Rubenking’s Delphi for
Dummies [IDG, 1995], and Charlie
Calvert’s Delphi Unleashed [Sams,
1995]. These are the texts I return to
again and again for general reference
and to resolve specific programming
challenges.

I’d like to sign off with a new topic and
some questions for you. Here’s another
portion of that letter from David Rice
(dated August 25):

My shop has been utilizing Delphi
Client/Server for some months now,
and have, in the last three weeks,
coupled it with the June Test Release
of Windows 95 and SQL 4.21. In
the last week, we have finalized our
installations with the production
release of Win95 and SQL 6.0 run-
ning on a networked NT server. Our
machines are Pentium/60s with 2MB
of video RAM (DFI boards) and
16MB of on-board RAM. A little
slow, but what the hell, right?

Nobody likes a braggart Mr Rice. <g>
By the way, I’m writing this fabulous
piece of editorial on a Pentium/100 I
inherited from a guy in production. But
I digress. The point is that this type of
information is valuable to me; it lets me
know where you are on the great soft-
ware bell curve and helps me determine
the article mix. It appears David is out
toward the bleeding edge. He also
shared his opinions regarding some pre-
vious letter writers, which, in the inter-
est of keeping things friendly (see
above), I’ll keep to myself. However, I
got a kick out of them David, and
thank you very much for writing.

Which brings us to the aforemen-
tioned questions. With Delphi32 in
the wings, where do you see yourself
or your programming shop headed
vis-à-vis Windows 95? Like Mr Rice,
do you already have Windows 95 up
and running? Or is it in your short-
term plans? Or is it a year off? And
most important, do you have clients
clamoring for Windows 95 applica-
tions? Let me know what’s going on in
your part of the world and I’ll share
the results in this forum.

Until next time, thank you for reading.

Jerry Coffey, Editor-in-Chief

CompuServe: 70304,3633
Internet: 70304.3633@compuserve.com
Fax: 916-686-8497
Snail: 10519 E. Stockton Blvd., Ste.
142, Elk Grove, CA 95624
Delphi INFORMANT ▲ 3

NOVEMBER 1995

Delphi
T O O L S

New Products
and Solutions

Delphi and Object Pascal
Training in USA & Asia

The first Borland Training Center
in the Connections Program,

GenoTechs, Inc., is providing
Delphi and Object Pascal training

internationally (i.e. Singapore,
Indonesia, Malaysia, Thailand,

India, and Hong Kong).
Developers can first learn the tool,
OOP, and Pascal concepts in the
Delphi course, then proceed to

more advanced language method-
ology in the Object Pascal course.

The training is hands-on.
On-site training is available, or

users can attend a monthly five-
day course in Phoenix, AZ. The
Delphi Developer and Object

Pascal in Delphi courses each start
at US$1340 (in Phoenix), and
US$1440 (on-site). Discounts

apply for consecutive courses. For
information or to register, contact
GenoTechs, Inc. at (800) GENO-

TEX; (602) 438-8647; or e-mail at
75374.2565@compuserve.com.
New VB Translator for Delphi

Eagle Research of San

Francisco, CA is shipping
VB2D, its new Visual Basic
(VB) to Delphi translator.
VB2D converts 90 to 100 per-
cent of a VB software applica-
tion to Delphi.

VB2D handles variants,
control, form and re-dimen-
sionable arrays, precedence
adjustments, gotos, gosubs,
type-1 VBXes, and virtually
all intrinsic VB functions.
VB2D Standard Edition
includes a diagnostic report
listing all project files, insert-
ed typecases, precedence
adjustments, renamed vari-
ables and procedures, substi-
tuted functions and classes,
and detailed diagnostic mes-
sages cross-referenced to
source code line numbers.

VB2D is designed for
developers managing the
translation and validation of
medium to large systems. It
creates a side-by-side listing
of VB programs with the
resulting Delphi code. The
VB2D Professional Edition
also creates detailed analyses
of VB and Delphi projects,
including cross-references for
variables, procedures, func-
tions, and object properties
and methods. The source
code for all added program
components is included with
the Professional Edition.

Price: VB2D Professional Edition,
US$450; VB2D Standard Edition,
US$150. Both versions include an uncon-
ditional 30-day, money-back guarantee.

Contact: Eagle Research, Inc., 360 Ritch
Street, Suite 300, San Francisco, CA
94107

Phone: (415) 495-3136

Fax: (415) 495-3638

E-Mail: Internet: vb2d@eri.uucp.net-
com.com
ReportPrinter Version 1.1 for Delphi Released

Nevrona Designs of

Chandler, AZ has released
ReportPrinter version 1.1, a
suite of native Delphi compo-
nents that allow programmers
to create reports compiled into
applications without requiring
extra files, such as DLLs or
VBXes. Therefore a separate
installation program isn’t nec-
essary, and only 25 to 50K is
added to the executable’s size.

ReportPrinter features memo
field or text stream printing
with automatic word wrap-
ping, justified text, boxes
around text for table style list-
ings, shaded fields or lines,
and snaking columns. It also
supports custom paper sizes,
graphics, scaling, precise page
positioning for pre-printed
forms, direct printer output,
printing to file, as well as stan-
dard or metric measurements.

ReportPrinter offers print pre-
view with zooming, panning,
and print-after-preview. It can
be used without a database, or is
compatible with a database
accessed from within Delphi.
Using ReportPrinter’s class
library, professional-looking
reports are created in Delphi
with minimal coding.

Nevrona Designs will soon
release an enhanced version
of ReportPrinter with a visu-
al interface and added func-
tionality.

Price: US$99 (includes complete source
and printed documentation).

Contact: Nevrona Designs, 2581 E.
Commonwealth Circle, Chandler, AZ
85225-6019

Phone: (602) 899-0794

Fax: (602) 530-4823

E-Mail: CIS: 70711,2020 or
Internet: jgunkel@primenet.com
Delphi INFORMANT ▲ 4

NOVEMBER 1995

Delphi
T O O L S

New Products
and Solutions

Starfish Announces
Dashboard 95

Starfish Software has announced
Dashboard 95, an upgraded 32-

bit version of the popular utility.
Dashboard provides a graphical

front-end that operates consistently
across all three primary Windows
platforms: Windows 3.1, Windows
95, and Windows NT. It features a
customizable selection of interactive
controls, system activities gauges,

and optional accessories.
Tabbed Quick Launch, Resource
Gauges, AppOrganizer, Shortcut

menus, Tool Tips, and a Panel man-
ager are new features in Dashboard
95. Those retained from the earlier
version include one-step drag-and-

drop printing or faxing, and the
ability to switch between full screen

views of open applications.
Dashboard 95 is available for
download from the Internet
Shopping Network, ZiffNet,

CompuServe, and software.net, and
from retailers nationwide. Selling for
US$49.95, an upgraded version is
available for US$39.95. To order,
call Starfish at (800) 765-7839.
SuccessWare’s Apollo Pro Adds SDM to Apollo

SuccessWare International of

Temecula, CA has released
Apollo Pro 1.0, which adds a
Source-code Documentation
Module (SDM) and a cus-
tomized version of Nevrona’s
ReportPrinter to the standard
version of Apollo. Following
Borland’s lead with their RAD
Pack product, the Apollo SDM
is a VCL source file that can’t
be compiled; it is supplied for
educational purposes only.

Apollo’s Replaceable
Database Engine (RDE) tech-
nology allows for record-based
(Xbase) data-table navigation
and management syntax dur-
ing program development,
with minimal concern for the
database format. A “no-code”
replacement for the BDE sys-
tem, Apollo can be installed
into an existing application
with no source code changes.
This allows immediate, multi-
user access of Xbase files from
legacy applications. Also, all
concurrent-access record and
file locking is compatible with
existing FoxPro and Clipper
applications. Apollo supports
CA-Clipper (NTX), FoxPro
2.x (IDX/CDX), and HiPer-
SIx (NSX) systems.

Apollo’s new features include
Conditional Indexes, Index
SCOPES, and Record-level
Data Encryption. Also integrat-
ed into the RDE is MachSIx,
SuccessWare’s integrated query-
optimizer that increases database
retrieval performance.

Apollo is royalty-free and
includes 30 days of free
voice, BBS, Fax, or
CompuServe technical sup-
port. A demonstration ver-
sion of Apollo is available for
immediate shipping.

Price: Apollo Pro, US$239. Registered
Apollo users can purchase SDM directly
from SuccessWare for US$99. There is a
30-day, money-back guarantee.

Contact: SuccessWare, 27349 Jefferson
Avenue, Suite 101, Temecula, CA 92590
Phone: (800) 683-1657 or
(909) 699-9657

Fax: (909) 695-5679

BBS: (909) 694-6891

E-Mail: Team SuccessWare 74774,2240

CIS Forum: GO SWARE
New Widgets Collection from Mobius

Mobius Ltd., of Hershey, PA

has released its Widget
Collection. This kit of compo-
nents for Delphi includes
TmoSticky, TmoShapedButton,
TmoPicturePreviewDialog,
TmoCards, TmoToolbox +
TmoTool + TmoDockingPanel,
and TmoTiler.

The TmoSticky component
aligns all types of controls to
fill the spaces on a re-sizable
form. The TmoShapedButton
component provides buttons
that aren’t square, flat, or
gray. With this feature devel-
opers can add color, rounded
edges, or make buttons ellip-
soid. TmoShapedButton also
makes multiple-line captions
easy to create.

Using TmoToolbox +
TmoTool + TmoDockingPanel,
tools can be placed in toolbox-
es and maintain “distant” radio
button functionality. Simply
drag the toolbox and drop it in
space; the toolbox will float in
its own window. The toolbars
even re-size if the toolbox
doesn’t fit.

With TmoPicturePreviewDlg,
developers can search for
images in any storage medi-
um. This component can be
used as-is or you can register a
property editor and get the
Mobius previewing dialog box.

The TmoCards component
creates a card deck in the
.DFM file, supports multiple
card fronts and backs, and
features several back designs.
Mobius’ Widget Collection
ships with VCL source code
and a hypertext help file.

Price: US$149

Contact: Mobius Ltd., P.O. Box 404,
Hershey, PA 17033

Phone: (717) 944-8265

Fax: (717) 944-8265

E-Mail: CIS: 73563,533
Delphi INFORMANT ▲ 5

NOVEMBER 1995

News
L I N E

November 1995

Informant Moves from
BBS to CompuServe

Elk Grove, CA — Beginning
Dec. 1, 1995, Informant

Communications Group, Inc.
(ICG) will close their BBS and

move its contents to the
Informant CompuServe forum.

Operational since June, ICG cre-
ated the Informant CompuServe
forum to foster the exchange of
technical information among
developers who use Borland’s
Paradox and Delphi, as well as

Oracle. This forum currently fea-
tures code contained in past

issues of Delphi Informant and
Paradox Informant, in addition to
shareware, company news, and

much more.

The Informant CompuServe
forum can be accessed by typing

“GO ICGFORUM” at any
CompuServe GO prompt. To join
CompuServe and obtain a starter

kit, including a US$15 usage
credit, call toll-free in the United
States (800) 524-3388, and ask

for REP Number 547.
Updates Available for Delphi and Delphi Client/Server

Scotts Valley, CA — Borland

has released updates to their
Delphi and Delphi
Client/Server products.

For Delphi, this upgrade
includes the latest versions of
the Borland Database Engine,
Local InterBase Server, and
availability for concurrent
ReportSmith, as well as the
most recent technical informa-
tion bulletins and frequently
asked questions from Delphi
Tech Support. It also features
improved context-sensitive help
in Delphi, Adobe Acrobat ver-
sions of the Delphi Language
Reference and VCL Reference,
and maximum compatibility
with Visual dBASE 5.5.

The Delphi Client/Server
update adds support for
Informix 5.x, Oracle syn-
onyms, and the Sybase forced
index feature.

To order, call Borland at 1-
800-453-3375, extension
1327. An update CD is priced
at US$5.95, and an update
disk set is priced at US$19.95
(plus US$5 shipping and han-
dling for either update).
InterBase Workgroup Server for Unix Ships

Scotts Valley, CA — Borland

International Inc. is now ship-
ping the InterBase 4.0
Workgroup Server for Solaris,
SunOS, HP-UX, AIX, SCO,
and AT&T Unix platforms.
InterBase 4.0 is designed for
enterprise and workgroup com-
puting environments and is
available on Windows 3.1,
Windows NT, Windows 95,
and all popular Unix platforms.

InterBase offers superior
performance for mission-criti-
cal operations including stock
trading, pharmaceuticals, aero-
space, and network manage-
ment, while adhering to
industry standards such as
SQL 92 and ODBC.

The InterBase architecture
offers a multi-client and multi-
threaded server for speed and
optimal use of resources. Its
versioning engine ensures data
transaction processing and deci-
sion-support users. InterBase
provides lock-free transactions
that require no additional pro-
gramming, while providing a
result for every query.

InterBase also features
multi-dimensional arrays, two-
phase commit and distributed
recovery, stored procedures,
event alerters, triggers, and
BLOb filters. It supports
ODBC, ANSI SQL 92 and
UNICODE character sets.

Borland’s Delphi, priced at
US$495, has a single-user
copy of InterBase. Delphi
Client/Server also includes a
local Windows version of
InterBase, along with the
rights to deploy local InterBase
applications, and costs
US$1,995. For more informa-
tion call Borland at (408) 431-
1000 or visit their Web Site at
http://www.borland.com.
Supreme Court to
Review Lotus vs.
Borland Ruling
Washington, DC — The US
Supreme Court has agreed to
review an appellate court’s rul-
ing that Quattro and Quattro
Pro spreadsheet products, for-
merly developed and marketed
by Borland, did not infringe on
the copyright of Lotus 1-2-3.

Recently acquired by IBM,
Lotus appealed to the US
Supreme court just months
after the US Court of Appeals
for the First Circuit reversed
an earlier ruling in favor of
Lotus. In their appeal to the
Supreme Court, Lotus argued
that Congress intended to
treat computer programs as
copyrightable literary works
according to a copyright law
enacted in 1976.

Lotus’ decision to appeal was
no surprise to Borland. “We
are confident in the appellate
decision,” said Borland
spokesman Steve Grady. “This
will allow us to get a definitive
answer and remove all ques-
tions surrounding the issue.”
The first ruling in the Lotus

vs. Borland case was announced
in August 1992. At that time,
the District Court ruled the

“Supreme Court”
continued on page 7
US Army to Use InterBase

Scotts Valley, CA — Borland

International Inc. has
announced that InterBase has
been chosen by the US Army
for its Advanced Field Artillery
Tactical Data System
(AFATDS). Magnavox
Electronic Systems Company,
the prime contractor, recom-
mended InterBase because it’s
platform-independent, and
includes unique, advanced dis-
tributed features.

“Operations on today’s air-
land battlefields are swift,
intense and highly lethal.
The commander receives
information from many
sources over his extended
battlefield. He then faces the
complex problem of synchro-
nizing his forces based on
up-to-the minute informa-
tion from remote field loca-
tions,” explained John
Williams, director of the
AFATDS program at
Magnavox. “Decision sup-
port of this nature requires a
modular and flexible archi-

“US Army to Use InterBase”
continued on page 7
Delphi INFORMANT ▲ 6

NOVEMBER 1995

News
L I N E

November 1995

Upcoming Client/Server
Seminars

Andover, MA — The Client/Server
Project Management Seminar

comes to San Francisco, CA on
Nov. 28-29, 1995. Seminar

instructor Peter M. Storer, vice
president of Client/Server

Consulting for Atre Associates,
will cover topics such as: What’s

Different About Managing
Client/Server Projects; Common
Pitfalls and Mistakes and How to
Avoid Them; and The Breadth of

Knowledge Required of the
Client/Server Project Manager.

For more information, call DCI
at (508) 470-3880 or visit their

Web Site at
http://www.DCIexpo.com/.

Objects and Relations
Seminar

Author, columnist, and industry
expert Chris Date will present the
Objects and Relations seminar

Nov. 7 - 9, 1995 in Palo Alto, CA.

This seminar reviews OODB sys-
tems and relational technology,

but attendees are not required to
have prior knowledge of object-
oriented technology. For more
information, call DCI at (508)

470-3880 or visit their Web Site
at http://www.DCIexpo.com/.
Supreme Court (cont.)

Command Hierarchy in
Borland’s spreadsheet products
infringed the copyright of
Lotus 1-2-3 and Borland vol-
untarily removed this feature.
The court reaffirmed its deci-
sion in July 1993.
Then later in 1993, the

Federal District Court ruled
another compatibility feature in
Quattro Pro and Quattro Pro
for Windows infringed the
copyright of Lotus 1-2-3. The
court placed an injunction
against Borland, barring further
sales or distribution of the
products. Borland shipped a
new version of Quattro Pro
without the infringing feature.
In addition, Borland appealed
the decision to the US Court of
Appeals, and in their written
opinions, all three appellate
judges ruled in favor of
Borland.
US Army to Use InterBase (cont.)
tecture that would support
both distributed processing
and distributed databases.”

AFATDS provides a singu-
lar fire support command
and control solution. It fea-
tures commander’s guidance,
mission planning guidance,
detailed asset control and sta-
tus, and movement control.
DB/EXPO ’95 Heads to New York

New York, NY — Offering

three concurrent conferences,
DB/EXPO ’95 is slated for
Dec. 5-7, 1995 at Javits
Convention Center in New
York, NY. With over 25,000 IT
professionals and 150 vendors
scheduled to attend, this year’s
DB/EXPO features the
Database and Client/Server
Development Conference, Data
Warehousing and Parallel
Computing Conference, and
the DB/EXPO Executive
Conference.

Participants in the Database
and Client/Server Development
Conference will discuss
client/server issues such as
building enterprise client/server
applications, integrating
client/server and legacy applica-
tions, and evaluating database
servers and application develop-
ment tools.
Topics for those attending
the Data Warehousing and
Parallel Computing Conference
will include building a business
case for a data warehousing
project, selecting the right end-
user tools, and listening to cus-
tomer experiences with data
warehousing.

The Executive Conference
will examine IT trends
including structuring an IT
organization; business re-
engineering; and maximizing
the business benefits of data
warehousing.

Keynote addresses will be
presented by Colin White,
president of DataBase
Associates International and
DB/EXPO conference direc-
tor; Don Haderie, IBM Fellow
and director of Data Manage-
ment Architecture and
Technology, IBM Corporation;
Dr Jerry Held, senior vice pres-
ident of Server Technologies
Division, Oracle Corporation;
Dennis McEvoy, vice president
of Products Group, Sybase,
Inc.; and Mike Saranga, senior
vice president of Management
and Development, Informix
Software.

For more information, call
1-800-2DB-EXPO.
Database and Client/Server World Nears

Andover, MA — DCI has

announced the Database and
Client/Server World
Conference and Exposition,
scheduled for Dec. 5-7, 1995
in Chicago, IL. This event
will feature several concur-
rent conferences that cover
client/server issues, data
warehousing and reposito-
ries, parallel databases, mid-
dleware, object-oriented
technologies, and groupware
application development.

Keynote speakers sched-
uled to appear at the
Database and Client/Server
World include: Shaku Atre,
president of Atre, Inc.; Dave
Duffield, CEO and president
of PeopleSoft, Inc.; Dr E.F.
Codd, independent consul-
tant; and Dennis McEvoy,
vice president of Products
Group, Sybase, Inc.

Topics at this conference
will address moving to
finance, manufacturing, and
human relations client/server
applications; developing a
practical framework for IT
and end-user teaming on
client/server application
planning and implementa-
tion; and evaluating vendors
and selecting software.

Database and
Client/Server World is
expected to attract over
25,000 MIS professionals
and more than 800 exhibits.
For more information, call
DCI at (508) 470-3880 or
visit their Web Site at
http://www.DCIexpo.com/.
Delphi INFORMANT ▲ 7

NOVEMBER 1995

On the Cover
Delphi / Object Pascal

By Richard Wagner

Think Objects, Not Reuse
Using OOP Fundamentals to Achieve Code Reuse
C ode reuse has always been a worthy objective for application devel-
opers. How many developers, however, have actually been successful
in realizing this goal? Depending on the development environment

you have used in the past, most forms of reuse typically center on code
libraries, templates, and application frameworks. While Delphi supports
these, it also provides native support for something much more powerful:
object-orientation.

In this article, we will explore the notion that substantive code reuse is attainable only by
introducing object-oriented programming (OOP) concepts into your application development
process. In short, if you think in terms of objects, reuse will follow. And in contrast, if you try
to achieve reuse using conventional approaches, you will ultimately fall short. Because most
developers work in a highly-competitive market, an object-oriented strategy can make the dif-
ference between success and failure.
OOP in the Business World
Object-oriented programming has been around for a long time
and is implemented in many languages. However, unless you
have worked with C++ or Object Pascal, you may have never
encountered a true OOP environment before working with
Delphi. This is particularly true if you come from a client/serv-
er database application development background.

Tools such as PowerBuilder, Paradox for Windows, and Visual
Basic tout themselves as being object-oriented, when in reality
they are “object-based”. You may be able to work with objects
in these environments, but support for such principles as
abstraction and dynamic binding is altogether lacking.

I suppose one of the problems with object-oriented program-
ming (OOP) is that it sounds so academic. Think of OOP’s
principle concepts: abstraction, inheritance, encapsulation, and
polymorphism. When first mentioning these to my wife, she
remarked: “Have you joined a cult?”

On first take, such terms sound foreign and useless in a busi-
ness world where rapid application development is the buzzword
of choice. As you will see, however, these OOP principles can
Delphi INFORMANT ▲ 8

On the Cover
be used in a practical manner to revolutionize the way you
develop applications in Delphi.
The Reuse Battle
While nearly everyone agrees on the principle of reuse, the
priority given to it by developers varies wildly. And this isn’t
the fault of the developer alone. After all, what developers
usually hear from their managers, users, or clients is: “We
want it now!” In this context, the developer is met with a
dilemma: Do I develop a program for this specific problem or
create a generic solution in twice the amount of time? The
“tyranny of the urgent” typically comes into play and a devel-
oper will — unless provided with a sufficient incentive for
reuse — develop a solution that is perhaps great for a specific
need at a specific time, but useless for future needs.

Even the term rapid application development (RAD) seems
inherently contradictory to the ideal of generic reusable code.
While that is true in the short-term, a well thought-out code
reuse strategy will facilitate RAD after an object component
library has reached a certain degree of maturity.
Reuse Out of the Box
Reuse is certainly promoted in Delphi right out of the box —
through components, VBXes, and templates. Prudent use of
these resources will take you a long way to the “promised
land” of reuse. Project templates serve as a good starting point
for new applications, providing an application framework that
you can then customize. Form templates offer a means of
enforcing standards (font, button placement, and so on), but
be careful of extending their functionality much beyond that.

Much of the reuse aspect of Delphi focuses on its component
architecture. And for good reason — components are the
“black box” objects you’re striving for. However, don’t make
the mistake of thinking solely in terms of visual component
libraries (VCLs). Components are a key element in a reuse
strategy, but you can use VCLs in a non-object-oriented man-
ner and, in so doing, miss much of what they can offer. As a
result, you must first have a successful object development
strategy in place before creating these components.
Think Objects
Inheritance and polymorphism are two basic OOP concepts that
are fundamental to discussing code reuse in Delphi. First, inher-
itance defines the relationship between object classes. For exam-
ple, a base class called TCola can have subclasses based on it
called TClassicCoke and TPepsi. Both TClassicCoke and TPepsi
inherit all the properties and methods of its ancestor (TCola),
such as the Caffeine property or the Drink method. However,
you can add new data or behavior to the descendant class and
can even override methods of the ancestor at run-time.

To illustrate the importance of inheritance in your applications,
let’s think about a typical code reuse scenario. Suppose you have
developed a nifty CreatePrivTable procedure and would like to
NOVEMBER 1995
reuse it in future database applications. When you begin a new
project (Project #2), you can then reference the library that the
procedure is contained in and use it in the new application.

During the development of Project #2, however, you realize
you must have specific table naming conventions that are not
provided for in the original code. Therefore, you must modify
the procedure to meet the needs of this second project. The
dilemma becomes: Do you 1) modify the tried and true
CreatePrivTable procedure to account for these new changes?
or 2) copy the original code into a new procedure to avoid
tampering with bug-free code?

This quandary demonstrates where the goal of reuse eludes us
in traditional procedural languages. There is no architecture
in place that can easily deal with change. Even small modifi-
cations to CreatePrivTable can have widespread implications
throughout one or more applications.
The Inheritance Solution
Using object-oriented techniques in Delphi, you avoid this
dilemma. Instead, you can convert the original procedure into
a TPrivTable class. You could make it into an object because it
has both properties (e.g. TableName, TableType, and Structure)
and methods (e.g. Execute).

When you begin Project #2, you can create a descendant class
called TPrivTableCustomNames and modify its properties and
behavior to meet its specific needs. From a reuse standpoint,
this has two advantages. First, in creating a subclass you avoid
touching the bulletproof code of TPrivTable, yet at the same
time, you have full access to this code. Second, you can main-
tain a link between the ancestor and descendant class. Let’s say
in six months you modify the TPrivTable class to take advan-
tage of Windows 95 long filenames. TPrivTableCustomNames
will be automatically updated as well.

Let’s look at a second example of inheritance by creating stan-
dardized OK, Cancel, and Help buttons to use instead of
constantly customizing TButton objects each time you need
them. You have custom properties for each of them (e.g.
Caption), and you want to make OK, Cancel, and Help the
same width and height as standard Windows buttons.
(TButton buttons are too large by default.)

Therefore, you can create a derivative of the TButton class
called TStandardButton that overrides the size of the base class:

{ Within the interface section }
type

TStandardButton = class(TButton)
public

constructor Create(AOwner: TComponent); override;
end;

{ Within the implementation section }
constructor TStandardButton.Create(AOwner: TComponent);
begin

inherited Create(AOwner);
Height := 23;
Width := 95;

end;
Delphi INFORMANT ▲ 9

On the Cover
Next, you must create three derivatives under TStandardButton
for the OK, Cancel, and Help buttons. This is accomplished
with the code shown in Figure 1. The entire .PAS file is shown
in Listing One on page 11.
Figure 1: Creating three derivatives of TStandardButton for the OK,
Cancel, and Help buttons.

{ Within the interface section }
type

TStandardOKButton = class(TStandardButton)
public

{ Public declarations }
constructor Create(AOwner: TComponent); override;

end;

type
TStandardCancelButton = class(TStandardButton)
public

{ Public declarations }
constructor Create(AOwner: TComponent); override;

end;

type
TStandardHelpButton = class(TStandardButton)
public

{ Public declarations }
constructor Create(AOwner: TComponent); override;

end;

{ Within the implementation section }
constructor TStandardOKButton.Create(AOwner: TComponent);
begin

inherited Create(AOwner);
Caption := 'OK';
Default := True;
ModalResult := mrOK;

end;

constructor TStandardCancelButton.Create(AOwner:
TComponent);

begin
inherited Create(AOwner);
Cancel := True;
Caption := 'Cancel';
ModalResult := mrCancel;

end;

constructor TStandardHelpButton.Create(AOwner:
TComponent);

begin
inherited Create(AOwner);
Caption := 'Help';

end;

Figure 2: The TButton object hierarchy.
The hierarchy of these buttons is shown in Figure 2. Because
of the relationship between TStandardButton and its descen-
dants, if you decide to change the size of the three buttons in
the future, you only need to make a single change to the
TStandardButton class.
The Polymorphism Solution
The second OOP concept that is loosely integrated with reuse
is polymorphism. You can think of polymorphism as a means
by which objects can communicate freely with each other.

The importance of polymorphism is perhaps best explained
with an example. Let’s imagine three vehicles — auto, bicycle,
NOVEMBER 1995
and plane — are available to take Bill from Los Angeles to
Boston. When he arrives in LA, Bill wants to be able to tell
any of the vehicles, “Go to Boston,” and have it take him
across the country. Without an object hierarchy, these vehicles
are independent creatures. That is, each has its own set of
properties, methods, and events to respond to. In such an
environment, how can Bill know the correct command to tell
the vehicle? Maybe the directive for the plane is FlyToBoston;
for the car, DriveToBoston; and for the bicycle, RideToBoston.
Bill has no way of knowing for certain. To further complicate
matters, suppose he encounters a new vehicle he’s never seen
before (like a spaceship) and is unsure of what it is. Since this
object has no “common ground” with other vehicles he has
previously used, Bill is unable to tell it what to do.

Without an object hierarchy, Bill is forced to know everything
about each vehicle to ensure that it will get him to Boston. In
addition, Bill needs to know about each possible vehicle in
advance so he will know what command to tell it when he’s
ready for the cross-country trek.

Now, let’s suppose Bill is in an object-oriented environment
and knows that each of these belong to a base class named
TVehicle and that all TVehicle objects understand a
GoToBoston message. (In reality, we would want to separate
the GoTo from the Boston since the GoTo is the behavior and
Boston is a variable. But for our purposes, let’s limit the GoTo
method to a single location — Boston.)

Communication is simplified from Bill to all TVehicle objects
and its descendants because he can issue a general message
(GoToBoston) to whichever vehicle he decides to use. The vehi-
cle is responsible for figuring out what to do with it. In fact,
he doesn’t even need to know the type of vehicle it is. This is
polymorphism in action. In Object Pascal code, our example
may resemble the code shown in Listing Two.
Conclusion
By incorporating object-oriented principles into our applica-
tions, we can realize tangible benefits of reuse. (Remember that
OOP has many advantages beyond reuse alone.) Inheritance
enables us to account for change by maintaining a linkage
Delphi INFORMANT ▲ 10

On the Cover

Richard Wagner is a technical architect for IT Solutions in Boston, MA. He is author of
several Paradox, Windows, and CompuServe/Internet books and is also a member of
Team Borland on CompuServe. Richard can be reached on CompuServe at
71333,2031 or via Internet at richard_wagner@its.com.
between a base class and its descendants. It also provides a “fire-
wall” for a class, protecting it from being sullied when we work
with a descendant class. Polymorphism allows us to create inde-
pendent objects with general interfaces, making communica-
tion between objects easier to code and maintain. As a result,
our objects become much more flexible and manageable.

If you intend to get serious about code reuse in Delphi, you will
spend considerable time learning component development.
However, make sure to approach components using an object-
oriented strategy. And remember — think objects, not reuse. ∆
NOVEMBER 1995
The demonstration source referenced in this article is available on
the 1995 Delphi Informant Works CD located in
INFORM\95\NOV\RW9511.
Begin Listing One — TStandardButton .PAS File
unit Standbtn;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls,Forms, Dialogs, StdCtrls;

type
TStandardButton = class(TButton)
public

constructor Create(AOwner: TComponent); override;
end;

type
TStandardOKButton = class(TStandardButton)
public

{ Public declarations }
constructor Create(AOwner: TComponent); override;

end;

type
TStandardCancelButton = class(TStandardButton)
public

{ Public declarations }
constructor Create(AOwner: TComponent); override;

end;

type
TStandardHelpButton = class(TStandardButton)
public

{ Public declarations }
constructor Create(AOwner: TComponent); override;

end;

procedure Register;

implementation
constructor TStandardButton.Create(AOwner: TComponent);
begin

inherited Create(AOwner);
Height := 23;
Width := 95;

end;

constructor TStandardOKButton.Create(AOwner: TComponent);
begin

inherited Create(AOwner);
Caption := 'OK';
Default := True;
ModalResult := mrOK;

end;

constructor TStandardCancelButton.Create(
AOwner: TComponent);

begin
inherited Create(AOwner);
Cancel := True;
Caption := 'Cancel';
ModalResult := mrCancel;

end;

constructor TStandardHelpButton.Create(AOwner: TComponent);
begin

inherited Create(AOwner);
Caption := 'Help';

end;

procedure Register;
begin

RegisterComponents('Buttons',[TStandardButton]);
RegisterComponents('Buttons',[TStandardOKButton]);
RegisterComponents('Buttons',[TStandardCancelButton]);
RegisterComponents('Buttons',[TStandardHelpButton]);

end;
end.

End Listing One
Delphi INFORMANT ▲ 11

N

On the Cover
Begin Listing Two — Polymorphism in Action
unit Polymrph;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls;

type
TForm1 = class(TForm)

Button1: TButton;
Edit1: TEdit;
procedure Button1Click(Sender: TObject);

end;

type
TVehicle = class(TObject)
procedure GoToBoston; virtual;
end;

type
TPlane = class(TVehicle)
procedure GoToBoston;
end;

type
TCar = class(TVehicle)
procedure GoToBoston;
end;

type
TBicycle = class(TVehicle)
procedure GoToBoston;
end;

var
Form1: TForm1;

implementation

{ $R *.DFM }
procedure TVehicle.GoToBoston;
begin
end;

procedure TPlane.GoToBoston;
begin

MessageDlg(‘Fly the skies.’,mtInformation,[mbOK],0);
end;

procedure TCar.GoToBoston;
begin

MessageDlg(‘Drive the Interstate.’,
mtInformation,[mbOK],0);

end;

procedure TBicycle.GoToBoston;
begin

MessageDlg(‘Ride on backroads.’,mtInformation,[mbOK],0);
end;

procedure TBill.Button1Click(Sender: TObject);
var

Plane: TPlane;
Car: TCar;
Bicycle: TBicycle;
AvailDays: Integer;

begin
AvailDays := StrToInt(Edit1.Text);
case AvailDays of

1..3 : Plane.GotoBoston;
4..6 : Car.GoToBoston;
else Bicycle.GotoBoston;

end;
end;

end.

End Listing Two
OVEMBER 1995 Delphi INFORMANT ▲ 12

NOVEMBER 1995

On the Cover
Delphi / Object Pascal

By John O’Connell

Power and Safety
Pascal Subranges, Enumerated Types, and Sets
D elphi’s implementation of Pascal is a greatly enhanced dialect of stan-
dard Pascal. Pascal’s roots lie in a language originally designed to help
teach basic concepts of structured programming and top-down design.

Indeed, Pascal was the language of choice in most academic institutions. For
example, those of you who studied computers at colleges or universities in the
early 1980s may have encountered Pascal on the school’s mainframe computer.

This history leads some programmers to think of Pascal as an old-fashioned programming language,
unsuitable for modern application development. This is especially true when Pascal is compared with
languages such as C or C++. Indeed, quite a number of “less than well-informed” computer journal-
ists hold this view of Pascal.
Pascal Emerges
However, this assertion about Pascal is — at least now — untrue. Borland has enhanced the language
to the degree where there’s little that programmers cannot achieve by using Pascal instead of the usual
“serious” C/C++ development systems.
And compared with C/C++, Pascal code is easier to understand. This
means that stable and bug-free applications are easier to build. In fact,
the problems with difficult-to-understand C code led to the introduc-
tion of the short-lived Pascal-like systems language, Modula-2, market-
ed by companies such as Logitech and Jensen & Partners in the early
1980s. However, Modula-2 never really caught on, possibly because of
the introduction of Turbo Pascal that went on to establish itself as the
de-facto Pascal implementation on PCs.

In addition to the object-oriented (OOP) extensions that Borland
added to Turbo Pascal (Object Pascal’s ancestor) in version 5.5, a whole
range of other useful language extensions essential for modern applica-
tions development were also added.

The aim of this article is not to discuss and compare Borland’s current
incarnation of Pascal with the version introduced by Niklaus Wirth in
1971. Instead, we’ll discuss a few useful features of the original Pascal
language that are often overlooked in the shadow of Object Pascal’s
extra language features.
Delphi INFORMANT ▲ 13

Figure 1:
Integer
types and
their equiv-
alent sub-

On the Cover

Integer Type Subrange Type Equivalent

ShortInt -128..127

Byte 0..255

SmallInt -32768..32767

Integer -32768..32767
Standard Pascal provided a number of user-definable data types
such as the subrange, enumerated, and set type in addition to the
usual numeric and character types. These user-definable types can
be used to create flexible data constructs which, when used effec-
tively, make it very easy to write clear, understandable Pascal code.

Let’s find out more.
.
-

range
types. Cardinal 0..65535

Word 0..65535

LongInt -2147483648..2147483647
The Subrange Type
As its name implies, the subrange type allows you to define types
that limit the possible values contained within a variable of this
type to a user-defined range. The type is defined with the lower
and upper bounds separated with two periods (..). For example:

type
TNibble = 0..15;

This defines a type that can be used to store integers with values
within the range 0 and 15. Any attempt to assign a value out of
this range will cause a compile-time or run-time error (provided
that Range checking is enabled on the Compiler page of
Delphi’s Project Options dialog box, or the {$R+} compiler
switch is used in your code).

Moreover, the specified range need not be zero-based. So, we can
make the following subrange type definitions:

type
THiNibble = 16..255;
TSignedByte = -128..127;

We can also declare a character-based subrange type to limit
assignable values to numeric characters:

type
TNumericChars = '0'..'9';

But how much space is used to store a variable of subrange type?
In our examples above, only one byte is used. If the subrange was
0..65535, then 2 bytes — the size of the Word type — are used
for storage, the same as for a subrange of 256..65535. If the range
is 0..$FFFFFF, the storage requirement is 4 bytes (not the expect-
ed 3 bytes, but the size of the Longint type). In terms of storage
required, the subrange type is matched to the nearest ordinal type,
thus 0..15 and '0'..'9' each occupy 1 byte of storage.

And just what is an ordinal type? An ordinal type is a sub-set of a
standard type, such as any of the integer types (byte, word, inte-
ger, etc.) or the Char and Boolean types. Each possible value of
an ordinal type has its own ordinality that is an integer value.

The various Real types, String, Pointer, and Class types are not
ordinal types. The Integer types shown in Figure 1 can be seen as
equivalent subrange types. (The size and range of the Integer and
Cardinal types will increase from 16 to 32 bits in Delphi32.)

The subrange type is a useful aid in debugging code where the
possible values of a variable must be restricted to a certain range.
As mentioned, any illegal assignment to a subrange type will cause
NOVEMBER 1995
a compile-time or run-time error if Range checking is enabled.
However, because assignments must always be checked to see if
they are allowed, Range checking adds code and slows your pro-
gram. Once your program is fully debugged (is there ever such a
program?), you can turn off Range checking and re-compile your
application to make it smaller and faster before delivering it to
your customer.

Range checking can be useful for debugging Pascal applications.
When using integer variables, choose the Integer type with a range
that most closely fits the possible range of values your integer vari-
able will encounter. Suppose, for example, that you’re using an
integer variable that should never be assigned a negative value —
it’s easy to be lazy and use a variable of type Integer. However, if
you make the variable a Byte or Word type, Range checking will
catch any attempt to assign a negative value to the variable and
pinpoint a bug in your application.
The Enumerated Type
This user-defined type is frequently used throughout the VCL
source code. Enumerated types are defined by a comma-separat-
ed list of “symbolic” ordinal values enclosed in brackets. For
example:

type
DOW = (Sunday, Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday);

declares a type representing a symbolic list of the days of the week
Declaring the variable, DayOfWeek, of this type, allows the follow
ing assignments:

DayOfWeek := Sunday;

or:

DayOfWeek := Friday;

but not:

DayOfWeek := 'Saturday';

nor:

DayOfWeek := 1;

Only the symbolic constants included in the enumerated type
definition can be assigned to a variable of that type. (The most
Delphi INFORMANT ▲ 14

On the Cover

Figure 2: Demonstrating underlying ordinal values.

type
DOW = (Sunday, Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday);

var
DayOfWeek: DOW;
DayNum: Byte;
...

begin
{ Groan! }
DayOfWeek := Monday;
{ Assigns 1 to DayNum }
DayNum := Byte(DayOfWeek);
{ Also assigns 1 to DayNum }
DayNum := Ord(DayOfWeek);
DayNum := 5;
{ Assigns Friday to DayOfWeek }
DayOfWeek := DOW(DayNum);
{ Causes a range-check error }
DayOfWeek := DOW(10);

end;
fundamental enumerated type is Boolean which has just two
possible values: True and False.)

Other examples of enumerated types used in the VCL include:

TDataSetState = (dsInactive, dsBrowse, dsEdit, dsInsert,
dsSetKey, dsCalcFields);

TBorderIcon = (biSystemMenu, biMinimize, biMaximize);

TNavigateBtn = (nbFirst, nbPrior, nbNext, nbLast,
nbInsert, nbDelete, nbEdit, nbPost,
nbCancel, nbRefresh);

Examine those VCL properties with pre-defined single values select-
ed from a drop-down list in the Object Inspector. Whenever a com-
ponent property can be assigned one of a number of pre-defined
values, that property is of an enumerated type.

The enumerated type can also be used as the basis for a sub-
range type:

type
WorkingWeek = Monday..Friday;

We can even use the enumerated type as an array index:

const
WorkDays = array [Monday..Friday] of string[3] =

('Mon','Tue','Wed','Thu','Fri');

or:

const
WorkDays = array [WorkingWeek] of string[3] =

('Mon','Tue','Wed','Thu','Fri');

As I’ve stated, enumerated types are simply a symbolic represen-
tation of the list of possible ordinal values that a variable can
have. The type DOW (defined earlier) is equivalent to the fol-
lowing hypothetical declaration:

type
DOW = (0,1,2,3,4,5,6);

The type DOW is simply a list of zero-based ordered values. We
can similarly interpret the Boolean type as (0,1) which is how
False and True are interpreted in C/C++.

The code in Figure 2 demonstrates this concept of underlying
ordinal values. We see that with a little typecasting we can con-
vert an enumerated type’s current symbolic value to its underly-
ing ordinality by using the standard function Ord or an integer
typecast. We can also assign an integer that has been typecast to
a variable of enumerated type.

An enumerated type can have a maximum of 65536 symbolic val-
ues that occupy 2 bytes of storage. Enumerated types with a max-
imum of 256 symbolic values occupy a single byte of storage.

The use of enumerated types makes code more readable and is
certainly a better and safer alternative to defining several integer
NOVEMBER 1995
constants (as you would have to with Visual Basic, for example).
Standard ANSI C/C++ had the equivalent enum enumeration
data type added only relatively recently.
The Set Type
The user-defined set type is one of the most useful language fea-
tures of Pascal. A set type is a collection or list of values (also
called elements or set members) of the same ordinal type (the base
type) that is declared as a comma-separated list within brackets.

For example, a set of characters including the characters Y, y, N

and n is declared as:

type
YesNo = set of char;

var
YN : YesNo;
...

begin
YN := ['Y', 'y', 'N', 'n'];

So we’ve defined a set, but what use are sets in Pascal programs?
Before continuing, we need to take a brief look at set theory.
Set Theory
We’ve all learned about sets at school and met with concepts
such as set union, set intersection, and set difference. Set union is
the set that includes elements from different sets; a set intersec-
tion is a set that includes only those elements common to differ-
ent sets; and a set difference is the set containing those elements
not present in another set. Figure 3 illustrates these set operators
diagramatically. The shaded areas represent the result set of the
operators applied between sets A and B.

Sets in Pascal can be used with set union, set intersection, set dif-
ference, and set equivalence operators, as well as the set member-
ship operator. Figure 4 lists the Pascal set operators.
Delphi INFORMANT ▲ 15

Figure 3: An illustration of Pascal’s set operators.

On the Cover
The operands used in set union, set intersection, and set differ-
ence expressions are themselves sets. However, the left and right
operand in set membership expressions are of ordinal and set
type, respectively. Set equivalence and set membership expressions
evaluate to a Boolean result. Expressions using the set union, set
difference, or set intersection operators evaluate to a set result.

Obviously, the set operators that use set operands can only be
used with sets of the same type. Therefore, for example, the fol-
lowing expression is illegal:

['Y','y','N','n'] + [1,0]

Sets can be declared in a number of ways (in addition to being
declared in the standard comma-separated list). As we’ve seen,
two periods can be used to define the range of values in a set.
Thus, the set defined as:

['A'..'G']

is equivalent to the more verbose:

['A','B','C','D','E','F','G']
NOVEMBER 1995

Operator Meaning Expression

+ Set union [1,2,3] + [4,5,6]

* Set intersection ['A','B','C'] * 'B','C'

- Set difference ['A','B','C'] - 'B','C'

= Set equivalence ['A','B','C'] = 'A','B'

['A','B','C'] = 'C','D'

IN Set membership 'A' IN ['A','B','C']

'Z' IN ['U','V','W']
We can also combine the above techniques to define sets of non-
consecutive values. For example:

['0'..'9','a..z','#']

defines a set of characters that includes the numeric characters,
lower-case alphabetics, and the hash (or pound sign) character.
Similarly, the set defined by:

[0..15, 255]

defines the set of integers between 0 and 15 and including 255.

Suppose we wanted to define a set of integers that includes all
the values between 10 and 128 but excludes the values 15, 21,
29, 45, and 115. We could define the set by using the various
ranges (0..14, 16..20, and so on). A far easier way would be
to employ the set difference operator. It lets us define the
required set as:

NumberSet := [10..128] - [15,21,29,45,115];

which is the equivalent of:

NumberSet := [10..14, 16..20, 22..28,
30..44, 46..114, 116..128];

where NumberSet is of type Byte.

If we wanted our set of integers to also include 2, 4, 6, and 8, we
could also use the set union operator:

NumberSet := [10..128] - [15,21,29,45,115] + [2,4,6,8];

And just to demonstrate the set intersection operator, the follow-
ing set expressions are equivalent:

[10..20]

and

[0..20] * [10..100]

But what is the result of the

[0..255] - [0..255]
Delphi INFORMANT ▲ 16

Figure 4: Pascal’s set operators.

Result

[1,2,3,4,5,6]

,'D'] ['B','C']

,'D'] ['A']

,'C'] True

,'E'] False

True

False

On the Cover
expression? This results in the empty set that is denoted by empty
brackets ([]). As the name suggests, the empty set is the set that
contains no values.

So on to the set membership operator, in. This operator
makes sets very useful in Delphi. Consider the following
statement:

if (NumVal >= 0) and (NumVal <= 32) then
DoSomething;

This can be shortened to:

if (NumVal in [0..32]) then
DoSomething;

With a more complicated conditional test, the statement:

if (NumVal = 10) or (NumVal = 15) or
(NumVal = 21) or (NumVal = 56) then
DoSomething;

can be shortened to:

if (NumVal in [10,15,21,56]) then
DoSomething;

With longer and more complicated conditional expressions, we
can see a clear advantage to using sets and the in operator.
However, the benefits are not just in terms of code clarity. Set
expressions are more easily optimized by the compiler, and thus
increase code speed and reduce code size.
Figure 5: The Object Pascal Include and Exclude procedures.

Procedure Example

Include (var s:set of T; e:T) Include(CharSet,'A');

Exclude (var s:set of T; e:T) Exclude(CharSet,'A');
Not Just Data Types
So far, the examples have involved characters and integers. But
sets aren’t restricted to these data types. Recall that a set is a col-
lection of values of the same ordinal type. Therefore, a set’s base
type can be defined by an enumerated type. For instance, we
could define a set of the days of the week:

DOWSet = set of DOW;

This line of code is equivalent to:

DOWSet = set of (Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday);

A set’s base type can also be a subrange type:

DOWNumbersSet = set of 0..6;

The only restriction on a set’s members is that the maximum
possible number of values the member type can have is 256.
This effectively restricts you to sets of type byte, char, subrange,
or enumerated. Therefore, the following set declaration is illegal:

BadSet: set of 0..120000;

Despite this restriction, sets are still useful and powerful tools in
your code armory. Delphi’s VCL uses sets in many places.
NOVEMBER 1995
TBorderIcons, for instance, is a TForm property that is a set of
TBorderIcon. Sets are also found when specifying the buttons to
be displayed in the dialog box created by calling the MessageDlg
function.

To check if a form has a maximize and minimize button, we
could use the test:

if (BorderIcons = [biMaximize, biMinimize]) then
DoSomething;

However, our test will fail if BorderIcons is set to biSystemMenu,
biMaximize, or biMinimize. To avoid this potential problem, we
should use the set intersection operator:

if ((BorderIcons * [biMaximize, biMinimize]) =
[biMaximize,biMinimize]) then

DoSomething;

Wherever the value of a component’s property can take on a
combination of values from a list, that property is of a set of
enumerated type. If you closely examine the unexpanded
TForm.BorderIcons property in the Object Inspector, you’ll see
the property values are enclosed in brackets as set elements.

Another use of sets is to test for a numeric character. This can be
as short as:

IsNumeric := (NumChar in ['0'..'9']);

Pascal also provides the standard procedures, Include and
Exclude, for use with sets. The Include procedure allows you to
add an element to a set and takes the set and the element to be
added as parameters. The Exclude procedure allows you to
remove an element from a set and takes the set and the value of
the element to be removed as parameters. Figure 5 shows the
parameters used with these procedures.
Using the Include and Exclude procedures is equivalent to
using the set union and set difference operators. However,
these Object Pascal procedures generate more efficient code.
Note that these procedures can only add or remove one ele-
ment at a time. On the other hand, using the union or differ-
ence operators can add or remove several elements in one
statement. The choice is yours.
Set Storage
Okay. So, sets are useful for reducing complex Boolean
expressions to a short and simple set expression. Surely
there’s a price to pay for this convenience, right? Sets are
slow and occupy lots of storage space, right? Well, don’t be
Delphi INFORMANT ▲ 17

On the Cover
such a pessimist because this isn’t necessarily so. To see why,
let’s take a look at how sets actually work.

A set is a bit array of a maximum 256 bits (or 32 bytes) with
each bit representing a member of the set. If a particular mem-
ber exists in the set, then the corresponding bit representation is
set. The maximum size of the set, therefore, determines the
amount of storage space required. For example, a set of Char or
set of Byte always occupies 32 bytes.

However, a set of enumerated type requires only enough space
to store its symbolic values. Therefore, the set DOWSet will
occupy only 1 byte because the set contains 7 possible values.
That equates to 7 bits that fit into a single byte. So, a set of
enumerated type containing 9 possible values will occupy 2
bytes and so on, up to the maximum of 256 possible values
that occupy 32 bytes.

The storage requirements of a set of subrange base type
depend on the bounds of the subrange. The following set dec-
larations will use one and two bytes of storage, respectively:

var
{ Has a maximum of 8 possible values and therefore

needs one byte of storage }
ByteSet: set of 0..7;
{ Has a maximum of 16 possible values and therefore
needs two bytes of storage }

WordSet: set of 0..15;

The number of bytes required to store a set of a particular base
type is calculated with the following formula:

(MaxValue div 8) - (MinValue div 8) + 1

where MaxValue and MinValue are the largest and smallest values
of the base type.
Set Internals
I’ve said that a set is simply a bit array. Let’s support that with a
few facts and examine the performance issues when using sets.
Consider the following set declaration:

var
ColourSet : set of (Red,Green,Blue,Cyan,Yellow,

Magenta,Black,White);
begin

ColourSet := [Blue, Cyan, Black];
end;

Since there are 8 possible values for the enumerated type
ColourSet, it occupies only a single byte (determined using
sizeof(ColourSet)). If we examine the value of this byte
(using byte(ColourSet)within the Evaluate/Modify dialog
box of the IDE debugger) after assigning ColourSet, we see it’s
set to 76 (or binary 01001100). Because the set contains the
third, fourth, and seventh member of the enumerated type,
the third, fourth, and seventh bits are set in the byte repre-
sentation of the set. (Remember that the lowest, or least sig-
nificant, bit is the rightmost bit in this scheme.)
NOVEMBER 1995
The byte position of a set member in the bit array can be deter-
mined with the formula:

(SetElement div 8) - (MinValue div 8)

where SetElement is a set element’s position within the range of
possible values of the set base type, and MinValue is the mini-
mum value that the base type can store.

Narrowing down the position of the set element, we can deter-
mine the bit position (within the byte position) of a set member
with the formula:

OrdinalValueOfTheElement mod 8

So how do the set operators work? Considering that a set is
simply a bit pattern, you may guess that set operators are
essentially bitwise operators, and you’d be right. This makes
set operations fast in practice. Let’s examine each set operator
in turn.

The set union operator is essentially a fancy wrapper for the bit-
wise OR operator. Consider these two sets:

a := [Red, Green, Blue];
b := [Black, White];

These are represented internally as the two bytes 7 and 192, or
00000111 and 11000000. OR’ing these two values gives us
11000111 which is the byte representation of the set:

[Red,Green,Blue,Black,White]

This is the result of set a added to set b.

The set intersection operator is based on the bitwise AND oper-
ator. For example, look at sets a and b:

a := [Red, Green, Blue];
b := [Black, White, Green];

The binary representation of these sets is 00000111 and
11000010 for a and b, respectively. Therefore, if we apply the
AND operator we get:

00000111 AND
11000010

00000010

This is the binary representation of the set [Green] which is the
result of a multiplied by b.

The set difference operator is more complicated, and is based on
the XOR and AND operators. Using sets a and b as declared
above, we apply the XOR operator:

00000111 XOR
11000010

11000101
Delphi INFORMANT ▲ 18

type
{ Bits 0 to 7 of a byte }
TByteBits = set of (b0,b1,b2,b3,b4,b5,b6,b7);
{ Bits 0 to 15 of a word }
TWordBits = set of 0..15;

var
MyByte: Byte;
MyWord: Word;
My8Bits: TByteBits absolute MyByte;
My16Bits: TWordBits absolute MyWord;

begin
{ Sets My8Bits to [b7] }
MyByte := 128;
{ Sets My8Bits to [b0,b1,b2, b3,b4] }
MyByte := 31;
{ Sets My16bits to [0..7] }
MyWord := 255;
{ Sets My16bits to [7] }
MyWord := 128;
{ Sets My16bits to [0,15] }
MyWord := 32769;
{ Sets MyByte to 3 }
My8Bits := [b0,b1];
{ Sets MyWord to 7936 }
My16Bits:= [8..12];
{ Sets MyByte to 0! }
My8Bits := [];

end;

On the Cover
This is the binary equivalent of the set [Red, Blue, Black,

White]. Now we AND this result with the bit pattern of set a
to complete the operation:

11000101 AND
00000111 (the bit pattern of set a)

00000101

This is the binary form of the set [Red, Blue] which is the
result of subtracting set b from set a.

The set membership operator uses the AND operator and com-
pares the result with the value of the ordinal left operand. The
following code is the equivalent of testing to see if White is a
member of set b:

10000000 AND
11000010

10000000

This is the binary value of White. It is then compared with the
value of the left operand (White) to return True.

The inner workings of the set equality operator should be quite
obvious!
Figure 6: Using absolute variables.
A New Data Type?
Now that the inner workings of sets has been revealed, I will invent
a useful “bit-field” data type. This can be achieved by using what
we’ve learned so far in this article in combination with a feature
that has been in Turbo Pascal for a long time: absolute variables.

Absolute variables are declared (using the keyword absolute) as
being residents at a certain specified memory address. This
address can be a segment and offset combination (e.g.
7FC0:FF00) or the address of another specified variable. For
instance, the variables AByte and AChar overlay each other
because both point to the same memory address:

var
AChar: Char;
AByte: Byte absolute AChar;

begin
{ Same as AByte := 65 }
AChar := 'A';
{ Same as AChar := 'a' }
AByte := 97;

end;

Therefore, you can carry out the code shown in Figure 6.

However, instead of messing around with bitwise operators to
obtain or set a bit, we can use the far clearer set notation.
Therefore, checking to see if the high bit of MyByte and
MyWord is set is simply:

if (b7 in My8Bits) then
ShowMessage('The high bit of MyByte is set!');

if (15 in My16Bits) then
ShowMessage('The high bit of MyWord is set!');
NOVEMBER 1995
To clear the high bit use:

My8Bits := My8Bits - [b7];
My16Bits := My16Bits - [15];

To clear the high and low bits use:

My8Bits := My8Bits - [b0,b7];
My16Bits := My16Bits - [0, 15];

After this discussion, it’s obvious that the highly sophisticated set
type is nothing more than a fancy wrapper around a bit-field
used with the AND, OR, and XOR bitwise operators. While the
set initially seems a sophisticated beast, once understood, it’s
more like a sheep in wolf ’s clothing.

Because of their internal workings, sets are fast and compact,
especially those sets of ordinal types with up to 8 or 16 possible
values that occupy a single byte or two bytes, respectively. Any
number occupying 16 bits or less is a number that is easily
handled by the CPU’s machine instructions. Because of this,
such 1 or 2-byte sets can have their operators optimized by the
compiler that generates in-line machine code instead of calls to
run-time library routines. Similarly, the Include and Exclude
standard procedures, when used on 8 or 16 bit sets, generate
in-line machine code.

With Delphi32, you can expect to see all 32-bit set operations
optimized as the CPU and operating system instructions make
better use of 32-bit integers.
Nearing the End
Where would we be left with Pascal if we didn’t have the sub-
Delphi INFORMANT ▲ 19

On the Cover

John O’Connell is a software consultant (and born-again Pascal programmer), based
in London, specializing in the design and development of Windows database applica-
tions. Besides using Delphi for software development, he also writes applications
using Paradox for Windows and C. John has worked with Borland UK technical sup-
port on a regular free-lance basis and can be reached at (UK) 01-81-680-6883, or
range, enumerated, and set types? Without enumerated types,
we’d be forced to write code such as:

const
Sunday = 0;
Monday = 1;
Tuesday = 2;
Wednesday = 3;
Thursday = 4;
Friday = 5;
Saturday = 6;

var
DOW: byte;

begin
DOW := Sunday;

end;

instead of:

var
DOW: (Sunday, Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday);

begin
Dow := Sunday;

end;

Also note that in the longer version of the code there is no built-
in mechanism to prevent the assignment of values outside the
range of 0 to 6 to the byte variable DOW.

Without sets we’d have to write:

begin
if (Num = 1) or (Num >= 6 and Num <= 66) or

(Num = 128) or (Num = 132) or
(Num >= 149 and Num <= 155) or (Num = 170) then
DoSomething;

end;

instead of:

begin
if Num in [1,6..66,128,132,149..155,170) then

DoSomething;
end;
NOVEMBER 1995
and we'd be stuck with:

var
DaysOffThisWeek: byte;

begin
DaysOffThisWeek := Wednesday + Friday;
...

{ Check if Wednesday has been taken as holiday }
if (DaysOffThisWeek and Wednesday) = Wednesday then

...
end;

instead of:

var
DaysOffThisWeek = set of (Sunday, Monday, Tuesday,

Wednesday, Thursday, Friday,
Saturday);

begin
DaysOffThisWeek := [Wednesday, Friday];
...

{ Check if Wednesday has been taken as holiday }
if (Wednesday in DaysOffThisWeek) then

...
end;

Once again, the first version will be more prone to invalid
assignments and is less easy to follow unless you understand
bitwise operators.
Conclusion
So there you have it. Pascal makes it easier to write clear, read-
able code that gives you a better chance of catching those bugs
that your customer may find first.

Who said Pascal is passé? ∆
Delphi INFORMANT ▲ 20

on CompuServe at 73064,74.

NOVEMBER 1995

On the Cover
Delphi / Object Pascal / C++

By Richard D. Holmes

Cultural Differences
A Comparison of Pascal and C++ Language Features
B ecause of its capabilities as an easy-to-use Windows programming tool,
Delphi is often compared to products such as PowerBuilder and Visual
Basic. (Delphi is sometimes even described as a “Visual Basic killer”.) Yet,

in many ways, the Object Pascal language that lies at the heart of Delphi is
more akin to C++ than to Basic. Like C++, Object Pascal is a hybrid, object-
oriented language with strong type checking that is enforced at compile-time.
This article compares the language features of Delphi and C++, especially with
regard to support for object-oriented programming. (In a future article the per-
formance of identical applications written in Delphi and C++ will be compared.)

Note that throughout this article, the feature set of C++ is that of the proposed ANSI/ISO stan-
dard, as described by Bjarne Stroustrup in his book, The Design and Evolution of C++ (Addison
Wesley, 1994). Many current implementations of C++ differ significantly from this dialect. For
details, consult your system’s language reference manual. Details of the Object Pascal language are
given in the Object Pascal Language Guide.
The Object Model
An object is a data structure that packages some data fields together
with the code that manipulates them. Objects allow the internal
implementation of a data structure to be hidden. The users of an
object can access only those fields and methods that the object
designer chooses to expose. Objects allow the compiler to enforce
the separation between interface and implementation. Through
inheritance, an object can be extended and refined “by difference”
— it need not be totally rewritten.

Hybrids. Both Object Pascal (OP) and C++ are hybrid languages in
which object-oriented programming features have been grafted onto a
non-object-oriented parent. The similarities between OP and C++ arise
more from the similar way in which they have evolved to support object-
oriented programming than from similarities in the parent languages.

As hybrids, both languages are required to maintain a large measure of
backward compatibility. This results in a certain degree of schizophrenia
as primitive data types are mixed with objects, and as calls to statically
Delphi INFORMANT ▲ 21

On the Cover
bound procedures are mixed with calls to dynamically bound
polymorphic methods. The requirement to support two pro-
gramming models enlarges and complicates both languages, but
also enhances their flexibility.

Classes. Both OP and C++ are class-based object languages.
Individual objects are not defined directly. Instead, a class is
defined and then objects are created that represent instances of
that class. There is a one-to-many relationship between a class
and its instances (objects). The class stores the code (methods)
that is shared by the objects. However, each object stores its own
data fields (state). In distinguishing between classes and objects,
the nomenclature of C++ is more rigorous than that of OP,
which often refers to both objects and classes as objects.

Fields. The fields within an object can be either primitive data
types or objects. Both languages allow the construction of com-
posite objects of unlimited complexity.

Normally, every object has its own copy of the data fields declared
within its class. In the jargon of SmallTalk, these data fields are
instance variables. It’s also possible to have class variables that are
created only once per class rather than once per object. In C++, a
data field declared to be static is a class variable. OP has no direct
support for class variables. However, they can easily be emulated
using global variables within the unit’s implementation section.

Properties. In OP, a property is a field that can be viewed and set
at design time. The addition of properties, property sheets, and
property sheet editors to OP represents a significant extension
compared to other compiled object languages. There is no equiv-
alent in C++.

Properties are also noteworthy because they are accessed indirect-
ly. Read and write methods provide a layer of code that encapsu-
lates a property’s state. They can be either simple references to a
data field or calls to functions that perform additional work,
such as maintaining referential integrity. Read and write methods
can easily be emulated in C++.

Methods. Both OP and C++ allow the overloading of method
names. Two or more methods within a class are allowed to use
the same name, provided that each method’s signature is
unique. A method’s signature is determined by its name, the
data type of its parameters, and the data type of its return value.
C++ also allows operators, such as +, -, =, and [], to be redefined
for each class. OP does not allow operator overloading.

The mechanisms for dispatching methods in OP and C++ clearly
reflect their origins as hybrid languages. Both languages allow
method calls to be either statically or dynamically bound.
Statically bound methods are non-polymorphic, can be resolved
at compile time, and correspond to traditional function calls.
The address of a static method can be stored directly in the code
segment by the linker. On the other hand, dynamically bound or
virtual methods are polymorphic and can only be resolved at
run-time, when the exact type of the object is known.
NOVEMBER 1995
Calls to virtual methods must be dispatched by the program at
run-time. Both OP and C++ use a virtual method table (VMT)
to store the address of each virtual method. Each class has its
own VMT that is nothing more than an array of function
addresses. Dispatching virtual methods is fast, since it typically
requires just de-referencing the pointer to the VMT and then
indexing into the array to retrieve the method’s address.

In addition to virtual methods, OP also allows the dynamic dis-
patching of methods. This is used primarily for handling Windows
messages. Because there are hundreds of these messages, the space
overhead of maintaining an entry for each of them in the VMT of
every class that is a descendant of TWindow would be substantial.
Therefore, the dynamic method table (DMT) for each class con-
tains entries for only those methods (message handlers) that have
been overridden within that class. If a message handler is not
found in an object’s DMT, then the DMT of each of its ancestors
is searched. Since TWindow contains a default handler for every
message, the search will be satisfied there, if not before. ANSI/ISO
standard C++ has no equivalent to dynamic dispatching.

In both OP and C++, only methods that are explicitly declared as
virtual can exhibit polymorphic behavior. This is probably an
unavoidable tradeoff in a hybrid language that must maintain
compatibility and competitive performance with its non-object-
oriented parent. It is nonetheless a shortcoming compared to pure
object languages such as SmallTalk or Eiffel. It limits the refine-
ment and specialization of descendants to only those characteris-
tics that the original class designer saw fit to make polymorphic.

C++ allows methods to be declared in-line. This allows simple
methods, such as those that read or write a private data field, to
be invoked without the overhead of a function call (that must
create a stack frame and save the CPU’s register values). In-line
methods are essentially an optimized form of static binding.

OP allows a method to be declared to be a class method. Class
methods, existing independently of any instance of the class, can
be invoked even if no instances of the class have yet been creat-
ed, and are not allowed to access any of the data fields within the
class. In C++, a member function declared to be static is a class
method. (Note that in OP a static method is statically bound,
whereas in C++, it’s a class method.)

Delegation. OP allows an event to be handled not by a method
within the receiver’s class, but by a method within an associated
class. In essence, message handling is “delegated” to another
class. The message receiver is usually a visual control, and the
associated class is usually the form that contains the control. C++
has no direct support for delegation.

Access Control. Within an object’s declaration, both OP and
C++ use the access control modifiers — private, protected,
and public — to control the visibility of the object’s fields and
methods. In C++, a public field or method has global visibili-
ty, a private field or method is visible only within that object’s
methods, and a protected field or method is visible only with-
Delphi INFORMANT ▲ 22

On the Cover
in that object’s methods or within the methods of its descen-
dants. In OP, a public field or method has global visibility, a
private field or method is visible to all procedures and func-
tions contained within that object’s unit, and a protected field
or method is visible to all procedures contained within that
object’s unit or in the units that implement its descendants.
C++ allows a class to grant methods in another class access to
its private fields by declaring them to be “friends”. OP does
not have a friend directive, since all methods implemented
within an object’s unit are automatically treated as friends.

OP also adds the modifier published for properties that must be
visible at design time. It’s a kind of “super public”. In C++, a
field or method is private unless declared otherwise, whereas in
OP, it’s published unless declared otherwise. Although the terms
are identical and the concepts are similar, the details of access
control are somewhat different between OP and C++.

References. In C++, a reference is a synonym or alias for
something. References act similarly to pointers, but without
the need for explicit de-referencing. References are used mostly
for passing arguments to functions, especially for operator
overloading. OP does not have explicit references. However, in
OP every object’s identifier is implicitly a reference. Viewed
another way, OP doesn’t really have (local) objects, it has only
references (to dynamic objects).

There are some differences between references in OP and C++.
For instance, in OP a reference always points to an object (i.e.
an instance of a class), whereas in C++, it may point to either
an object or a built-in data type. In OP, a reference may be nil,
but in C++, a reference must always point to something. In OP,
a reference may be reassigned to point to a different object.
However, a reference always points to the same object in C++.

Constructors and Destructors. Both OP and C++ use constructor
methods to create and initialize new objects, and destructor methods
to destroy them and perform any required clean up. Both languages
support constructor overloading, and both require (C++) or recom-
mend (OP) using virtual (polymorphic) destructors. Constructor
overloading allows specialized constructors to be used in cases where
the object requires specialized initialization.

Inheritance. Both OP and C++ allow a class to be specialized
through inheritance. The descendant may add new data fields, but
may not remove any existing fields. The descendant may add new
methods and may replace (or override) existing methods.

Inheritance is implemented by appending any new fields to the end
of the parent object’s data record, appending any new polymorphic
methods to the end of the parent’s VMT, and replacing the address
in the VMT of any inherited methods that have been overridden.

OP allows a descendant to inherit from only one ancestor. It
uses a single-inheritance hierarchy that is rooted in TObject, the
ancestor of all objects. C++, on the other hand, allows a descen-
dant to inherit from multiple ancestors. The benefits of single
NOVEMBER 1995
inheritance versus multiple inheritance are widely debated (and
this controversy is beyond the scope of this article). Multiple
inheritance introduces into C++ complications (name clashes)
and language features (virtual base classes) not present in OP.

Both languages allow the declaration of abstract classes. Abstract
classes allow an interface to be defined for a concept that cannot
meaningfully exist as a concrete object. The classic example is a
graphics program in which TShape defines the common interface
for the concrete classes TCircle, TRectangle, and TTriangle. An
abstract class is one whose declaration includes one or more
abstract methods.

Methods in OP are made abstract by adding the abstract
directive to the method declaration. In C++, methods are
made abstract by adding the pure virtual qualifier (= 0) to
the method declaration. In OP, abstract classes can be instanti-
ated and used, provided the abstract (undefined) methods are
not called. In C++, abstract classes can never be instantiated
— they can only be used as a base for deriving other classes.

Templates. Templates are used in C++ to define generic classes
that can be instantiated for a variety of specific types. Templates
are especially useful for creating type-safe containers. For exam-
ple, a linked list template could be used to create a list object
that accepts only triangles. With templates, type checking can
be performed at compile-time to ensure that every object added
to TList<TTriangle> is either a TTriangle or one of its descen-
dants. Delphi has no features for defining generic classes.

Run-Time Type Information. Both OP and C++ provide run-
time type information (RTTI) on objects. OP uses the
ClassName, ClassType, ClassParent, and ClassInfo methods to pro-
vide type information on an object. The is operator is used to
determine whether an object is of a given type or one of its
descendants. The as operator is used to perform type-safe casting.
In C++, the typeid operator returns a reference to the type_info
object that describes an object’s class, including its name. The
dynamic_cast<> operator is used both to determine whether an
object is of a given type and to perform type-safe casting.
Memory Management
Both OP and C++ are designed to create objects that use memory
efficiently. Except for the addition of a pointer to the VMT for its
class, the size and memory layout of an object’s data fields are
identical to that of the equivalent record (OP) or struct (C++).
(Classes that are not polymorphic avoid even this overhead.)

C++ supports three storage classes for allocating program vari-
ables: static, automatic, and dynamic. Static objects are created in
the program’s data segment, automatic objects are created on the
stack, and dynamic objects are created on the heap. Static storage
is used for global objects, automatic storage is used for local
objects, and dynamic storage is used for objects created on-the-fly.

C++ also separates the object construction process into two
steps: memory allocation and initialization. Memory allocation
Delphi INFORMANT ▲ 23

On the Cover
is performed by the new method, which can be both overrid-
den and overloaded. By allowing the use of customized memo-
ry allocation routines, this provides considerable flexibility,
albeit at the cost of requiring the programmer to grapple with
the low-level details of writing a custom memory manager.

OP, by contrast, supports only dynamic objects. Local and global
objects can be declared, but in actuality, only the reference (point-
er) is stored in the data segment or on the stack. The object itself
must be manually created and is always stored on the heap. OP
also does not allow custom memory allocation routines. All class-
es use the built-in heap manager that is optimized for both space
and speed compared to the Windows GlobalAlloc function.

Neither language provides automatic garbage collection. The
programmer is responsible for tracking and deleting any objects
created dynamically.
Type Checking
Both C++ and OP use static type checking as the primary
means of verifying that a program is internally consistent. All
identifiers must be explicitly declared before they are used. All
assignments, expressions, and function calls are checked for
type compatibility. Type checking is done at compile-time
rather than at run-time.

Both languages require that the identifiers used for variables
and constants be explicitly declared. However, OP requires
that all variables and constants be declared in special sections
at the top of the sub-program (const and var). On the other
hand, C++ allows them to be declared at the point in the code
where they are first used. C++ allows a variable to be initial-
ized as part of its declaration, while OP allows this only for
“typed constants” (which really aren’t constant). If a variable or
constant is an object, C++ will call the constructor specified by
the initialization expression, or the default constructor if no
initialization is provided. In OP, declaring an object variable
only allocates space for the reference pointer. It neither creates
nor initializes the object.

Both languages require that the identifiers for functions be
explicitly declared and that the declarations include a list of
the function’s parameters and their data type. (OP makes a
distinction between functions and procedures, but a procedure
is just a function with a return type of “void”.) The combina-
tion of a function’s name, returned data type, number of para-
meters, and sequence of parameter data types determines its
“signature”. It is an error in either language to call a function
without the correct number or sequence of parameters. In this
respect, C++ is much stricter than its parent, which originally
performed no parameter checking at all. For compatibility
with C, both languages allow a function to be explicitly
declared to accept a variable number of parameters. C++ also
allows a default value to be specified for each parameter, which
allows an abbreviated parameter list to be used for simple calls
to a function that sometimes requires many parameters. OP
does not support default parameter values.
NOVEMBER 1995
Both languages allow parameters to be passed either by value or by
reference. In both OP and C++, parameters can be declared const
to prevent the function from modifying their value. This allows
calls by reference to be used for efficiency without compromising
safety. (In OP, passing a const parameter by value or by reference is
decided by the compiler.) In C++, methods can also be declared
const. This guarantees that they do not modify any object’s fields.

Both languages provide casts so that a variable of one type can be
treated as if it were a different type. These casts can be used on
either primitive or user-defined types. Unchecked casts place the
burden of ensuring compatibility upon the programmer. In addition
to ordinary casts, C++ also provides specialized casts that give the
programmer finer grained control and make the intent of the cast
more obvious. These specialized casts include dynamic_cast<>, stat-
ic_cast<>, reinterpret_cast<>, and const_cast<>. In OP, the is and
as operators must be used together to perform type-safe casting.

All in all, the type safety of C++ has improved to the point
where it is now essentially equal to that of OP. This is a major
change from the relative positions of C and Pascal.
Exception Handling
Both OP and C++ use exception handlers to separate the code
that handles errors from the code that represents the normal
flow of control. The code to be protected is enclosed within a
try block and followed by an exception handling block.
Functions that detect an error will either raise (OP) or throw
(C++) an exception. If the caller is not prepared to handle (or
catch) the exception, then it will be propagated upwards through
the chain of exception handlers that may have been installed by
higher-level callers. If the exception is not caught by a user-
installed handler, then it will be caught by the default handler.
In OP, the default handler displays a message box describing the
error. In C++, the default handler terminates the program.

In addition to the try...except construct, OP also provides the
try...finally construct. The difference is that the statements in the
finally block do not constitute an exception block and are executed
whether or not an error occurs. This is useful for ensuring that allo-
cated resources are released regardless of the success or failure of the
code in the try block. C++ has no structural equivalent to try...final-
ly, but relies instead upon a strategy of “resource acquisition is ini-
tialization”, wherein the destructors of local objects (storage class
“automatic”) are used to release any resources that were acquired by
their constructors. The destructors will be called as the stack
unwinds, regardless of whether it is being unwound because an
exception was raised or because the function completed normally.

Both languages treat exceptions as objects and implement a hier-
archy of exception types. This allows a generalized exception
handler to catch any of a variety of specialized exceptions.
Modularity
Both OP and C++ allow the source code for a large program to
be divided into individual files that can be separately compiled. In
Delphi, the program is divided into units (these are similar to
Delphi INFORMANT ▲ 24

On the Cover

Pascal was designed: C was designed:
modules in Modula-2 and packages in Ada). A unit consists of a
public interface and a private implementation. The public part of
a unit is imported into another unit through the uses directive.
The explicit separation of interface and implementation allows
the compiler to manage dependencies between units and to auto-
matically recompile only those units that are affected by a change.
Implementation sections also provide a level of enforced privacy
that is not available in C++. Through the use of nested subpro-
grams, OP also supports finer grained modularization than C++.

A C++ program consists of header files and source files. The
header files typically contain the interface definitions, and the
source files contain the implementation. However, this sepa-
ration is not enforced by the language, and the contents of a
source file have equal visibility to the contents of a header
file. C++, like C, does not support nested functions. It does
support nested classes, but these are generally less useful.

ANSI/ISO C++ provides namespaces to assist in the construction
of large programs and in the use of libraries. This provides a pow-
erful mechanism for managing namespace pollution and for
ensuring that identifiers are not “silently” re-declared. Units in
OP provide a similar form of encapsulation for identifiers
declared within the interface part. (Identifiers declared within the
implementation part are, of course, completely private to that
unit.) However, the rules of unit scope mean that the resolution
of clashing names is dependent upon the sequence of units listed
in the uses clause. Changing the sequence of items in the uses
clause can (silently) change the meaning of an OP program.

Lastly, OP has introduced the concept of initialization sections
that are executed during program start up. This is useful for ini-
tializing library routines. A similar effect can be achieved in C++
by using constructors for static objects, but this can get tricky.
Figure 1: Original design intentions for Pascal and C.

for clarity, safety, and modularity. for direct manipulation of raw
memory with minimal overhead
in space and time.

as a high-level language with as a medium-level language
direct support for multi-level that is close to the machine.
modularization and data
abstraction.

to protect the programmer. to trust the programmer.

to teach applications for professional systems
programming. programmers.
Portability
C++ is available on many platforms, while Delphi is currently
available for only one. If portability is a primary concern, howev-
er, C is much more portable than either C++ or OP.

The limited portability of C++ is due to two factors. First, the lan-
guage itself has undergone many revisions, some quite recently.
Many implementations of C++ lag behind the feature set of the
ANSI/ISO standard by as much as five years, lacking major fea-
tures such as templates and exception handling, not to mention
new-style casts, RTTI, and namespaces. Second, most object-ori-
ented programs use third-party class libraries that are not portable.
Even after the ANSI/ISO standard library for C++ is completed
and becomes widely available, there will be problems with library
portability. This is because the standard library does not cover
such key areas as graphical user interfaces and database access.
Richard Holmes is a senior programmer/analyst at NEC Electronics
in Roseville, California, where he designs and develops client/serv-
er database applications. He can be reached on CompuServe at
72037,3236.
Conclusion
In summary, Object Pascal provides most of the object-orient-
ed programming features of C++. Both languages are hybrids
that implement object-oriented programming through the use
of virtual method tables for polymorphic methods. Both allow
NOVEMBER 1995
objects to be specialized through inheritance, but allow only
those methods originally declared as virtual to be made poly-
morphic. Both use the access control modifiers private, pro-
tected, and public to control the visibility of an object’s fields
and methods. Both use strict type checking at compile time as
the primary means of verifying that a program is internally
consistent. Both treat exceptions as objects, use inheritance to
implement a hierarchy of exception types, and pass exceptions
from the innermost scope outwards until a handler is found.
Lastly, both languages provide for the separate compilation of
program modules and support reuse through object libraries.

The most significant features in C++ that are missing in
Object Pascal are templates, multiple inheritance, operator
overloading, in-lined functions, the ability to allocate objects
on the stack (“automatic”) or in the data segment (“static”),
and the ability to override the memory allocation operator
(new). The features in Object Pascal that are missing in C++
are published properties that can be viewed and set at design
time, delegation, nested subprograms, and modules (“units”).
Neither language provides automatic garbage collection, and
both are handicapped by gaps in their standard object
libraries. C++ has the edge in portability, but for Windows
programming, Delphi provides a development environment
that is unsurpassed for convenience and speed.

Lastly, in spite of their similarity in features, there are signifi-
cant cultural differences between Object Pascal and C++.
Both languages are hybrids created by grafting object-oriented
features onto popular 3GLs, but the philosophical founda-
tions of their parents are quite different (see Figure 1). For
example, for nearly 20 years Pascal was the premier language
for teaching structured programming. C was, and still is, the
best “portable assembler”. Although their object-oriented off-
spring have converged significantly, these cultural differences
are still quite evident. They should not be ignored. ∆
Delphi INFORMANT ▲ 25

NOVEMBER 1995

DBNavigator
Delphi / Object Pascal

By Cary Jensen, Ph.D.

The BatchMove Component
Copy, Delete, Append, and Update Data

with this Versatile Component
It’s often overlooked when the Data Access page on the Component Palette
is mentioned, but contrary to general perception, the BatchMove component
can play an important role in database applications created with Delphi.

The capabilities of the BatchMove component appear simple enough. It permits you to move or
copy records from a DataSet to a table. However, this simplicity belies its usefulness. Like a SQL
INSERT query, BatchMove can be used to insert records from a DataSet into an existing table.
Unlike an INSERT query, however, the table you copy the records to doesn’t need to exist.

But this is just the beginning. There are four major capabilities of the BatchMove component: cre-
ating a table and placing the current records of a DataSet in it, deleting records from a table that
correspond to those in a DataSet, inserting records from a DataSet to a table, and updating exist-
ing records in a table based on those in a DataSet.

Before examples of these operations are highlighted, let’s consider the essential properties and
methods of this component.
Using BatchMove
There are three essential properties for using the BatchMove component: Source, Destination,
and Mode.

First, the Source property can be assigned any DataSet component. Therefore, you can assign either
a Table, Query, or StoredProc component name to this property. While any Table component is
acceptable, you would only assign one of the other DataSet descendants to this property if they
return a cursor to a DataSet. For example, it would be reasonable to assign a Query component
containing a SQL SELECT statement to the Source property, but it wouldn’t make sense to assign
a Query containing an ALTER TABLE statement.

Second, the Destination property is always assigned a Table component. This table is where the
records of the source DataSet are copied, deleted, inserted, or updated.

Third, the Mode property defines the type of operation performed by the BatchMove compo-
nent. Figure 1 shows the five modes. It also shows whether a table assigned to the Destination
property must exist before calling BatchMove’s Execute method, and if the destination table
must be indexed.
Delphi INFORMANT ▲ 26

Figure 1: The types of operations performed by BatchMove.

Mode Destination Must Be
Must Exist? Indexed?

batAppend (default) No No

batAppendUpdate Yes Yes

batCopy No No

batDelete Yes Yes

batUpdate Yes Yes

Figure 2 (Top): The BATDEMO project. This project permits a user to
enter a SQL SELECT statement, execute it, and then copy the results to
a new table. Figure 3 (Bottom): The OnClick event handler for the
Copy Result to Table button.

procedure TForm1.Button1Click(Sender: TObject);
begin

if Query1.Active = False then
Exit;

if SaveDialog1.Execute then
begin

Table1.TableName := SaveDialog1.Filename;
with BatchMove1 do

begin
Source := Query1;
Destination := Table1;
Mode := batCopy;
Execute;
ShowMessage(IntToStr(MovedCount) +

' records copied');
end;

end;
end;

DBNavigator
Creating a Table
One of the simplest and more common uses of BatchMove is to
create a new table containing the records returned by a Query or
StoredProc.

As an example, the form in Figure 2 provides a memo field
where a user can enter a SQL SELECT statement. The results of
this query — executed against the database selected in the Alias
combobox when the Execute Query button is clicked — are dis-
played in the Query Result DBGrid.

After executing the query, the results can be written to a new table
by clicking the Copy Result to Table button. The Object Pascal
code associated with this button is shown in Figure 3. First, the code
ensures the Query component is active. If so, it displays the Save
File common dialog box using a SaveDialog component. If the user
selects or enters the file name to copy the query result records to
(indicated when the SaveDialog’s Execute method returns True), the
selected file name is assigned to the Table component Table1.

Next, BatchMove’s Source property is set to Query1, its
Destination property is set to Table1, and its Mode property to
batCopy. Its Execute method is then called to initiate the copying.
Finally, a message is displayed that indicates how many records
were copied based on the BatchMove’s MovedCount property.

When the Mode property is set to batCopy, BatchMove creates
the destination table if it does not already exist. (This is also
true when Mode is set to batAppend, despite what it says in
the on-line help description.) If the destination table exists,
it’s replaced by the new table when Mode is set to batCopy,
and added to it if Mode is set to batAppend. In each case
where Mode is set to batCopy, the destination table is not
keyed. To apply an index to this table, you must use the
AssignIndex method of the TTable class.

Under normal conditions, all records in the source DataSet are
copied to the destination (see the discussion of table ranges in
this article). There may be times that you want to place an upper
limit on the number of records that BatchMove can process. For
example, if the source DataSet has the potential of containing a
large DataSet (say, in the millions of records), and the user can
request that these records are processed by BatchMove, you may
want to limit the number of records to be copied. You can do
this with the RecordCount property.
NOVEMBER 1995
When RecordCount is set to its default value, 0 (zero), all
records referred to by the source DataSet are processed by the
BatchMove’s Execute method. When you set this property to
any positive integer, that number identifies the maximum
amount of records BatchMove will process during any one call
to its Execute method.
Using a Table as a Source
While the BatchMove Source property is often assigned a Query
component, it is also useful to assign a Table component to this
property. Several characteristics of such a table are important in
BatchMove’s execution, including index and range.

Either a primary or secondary index defines the ordering of
records in a table component. For certain types of BatchMove
operations, such as batDelete, batUpdate, and batAppendUpdate,
it’s necessary to assign an index to the source table, and a corre-
sponding index to the destination table. This permits
BatchMove to match the records in this table for deleting or
updating the destination table records. Any index defined for
the source table when batCopy is the mode, defines the order of
records in the destination table.
Delphi INFORMANT ▲ 27

DBNavigator

Figure 4 (Top): This project permits you to define a range on the
employee number field to restrict which records are referred to by the
table. After applying a range, using BatchMove to copy records from
this table will copy only those records in the defined range. Figure 5
(Bottom): Defining the range.

with Table1 do
begin

EditRangeStart; { Set the beginning key }
Fields[0].AsInteger := StrToInt(Edit1.Text);
EditRangeEnd; { Set the ending key }
Fields[0].AsInteger := StrToInt(Edit2.Text);
ApplyRange; { Tell the dataset to establish

the range }
end;
A range defines a restriction on the records available in a table.
For example, even though a table may contain all sales records
for the past five years, it is possible to define a range that
includes only those records from a single year. You can apply a
range using either the Table method, SetRange, or the Table
methods: SetRangeStart, SetRangeEnd, and ApplyRange.

When a range is defined for the source table of a BatchMove
operation, only those records in the defined range are
processed. If the Mode is batCopy, for instance, only the
records in the defined range are copied to the destination
table. Consider this example: If you have defined your Sales
table as the source table and set a range to include only
records from a given year, only records that lie within the
range will be copied to the destination table.

The use of BatchMove where the source table has an applied
range is demonstrated in the project BATRDEMO (see Figure 4).
This table is the Employee table from the alias, DBDEMOS.
This alias points to a directory of example data installed when a
complete installation of Delphi is performed.

When a range is applied to this table and the Move Records
button is clicked, only records in the currently selected range
are copied to the destination table. The code that defines the
range is shown in Figure 5, and the following code copies the
records:

if SaveDialog1.Execute then
begin

Table2.Tablename := SaveDialog1.Filename;
BatchMove1.Execute;

end;
Deleting Records
Although not obvious by its name, BatchMove can delete records
from the destination table. Both source and destination tables
must use a compatible index, and the Mode property must be set
to batDelete. Under these conditions, any record in the destina-
tion table with indexed field values matching those of the source
table record will be deleted when BatchMove is executed.

This feature is useful for archiving records. For example, imagine
you want to keep only the current year’s sales in the Sales table.
Once a year it’s necessary to copy last year’s records to an archive
table, and then remove them from the Sales table. This is easily
done by following these steps:
1) Assign a Table component to the Sales table.
2) Set a range on the Sales table to include only those records

prior to the current year.
3) Assign the Sales table component to BatchMove’s Source

property.
4) Assign another Table component to the archive table.
5) Set the BatchMove Mode property to batAppend.
6) Call the BatchMove component’s Execute method.
7) Remove the range from the Sales table component (calling

SetRangeStart, SetRangeEnd, and ApplyRange without defining
a range removes a range).
NOVEMBER 1995
8) Assign the Archive table component to the Source property.
9) Assign the Sales table component to the Destination table

property.
10) Set the Mode property to batDelete.
11) Call BatchMove’s Execute method.
Moving Records to an Existing Table
Using the Mode, batAppend, you can add records from a DataSet
to an existing table. This operation is more complex than simply
creating a new table, since the records added must conform to
the rules defined for the destination table. For example, if the
destination table is keyed, there may be one or more records in
the source table with key field values that duplicate those in the
destination table. Also, a source table record may contain values
that conflict with table integrity rules (e.g. required fields), or
other data rules (e.g. minimum or maximum acceptable values).

The BatchMove component has a number of methods that
enable you to control what should happen if a problem
occurs during execution. Using the AbortOnKeyViol and
AbortOnProblem properties, you can instruct BatchMove to
terminate operation if a corresponding problem is encoun-
tered. Using the properties, KeyViolTableName and
ProblemTableName, you can enter the name of a Paradox table
that BatchMove will create if a problem does occur.

Problem records encountered during BatchMove’s execution are
placed in one of the tables specified by the KeyViolTableName
Delphi INFORMANT ▲ 28

DBNavigator
and ProblemTableName properties. For example, any records that
would generate a key violation (attempted duplication of destina-
tion key field values) are placed in the table specified by the
KeyViolTableName property. If AbortOnKeyViol is set to True, one
record appears in this table if a key violation is encountered. If
AbortOnKeyViol is set to False, all records that would produce a
key violation are placed into this table.
with BatchMove1 do
begin

Source := Table1;
Destination := Table2;
Move := batAppend;
Mappings.Clear;
Mappings.Add('Student_ID=ID');
Mappings.Add('Last_Name=LNAME');
Mappings.Add('First_Name=FNAME');
Mappings.Add('Address=STREET');
Mappings.Add('City_CITY');
Mappings.Add('State/Prov=STATE');
Mappings.Add('Country=ORIGIN');
Mappings.Add('Postal_Code=ZIP');
Execute;

end;

Figure 6: Using Mappings with field-name pairs.
Updating Tables
While batAppend permits you to insert records into an existing table
(but only if records using the same key do not already exist in the
destination), BatchMove also provides two modes that permit you
to update records in the destination table based on values stored in
the source. These modes are batUpdate and batAppendUpdate. Using
batUpdate, any records in the destination table whose current index
values exactly match those same index values in the source table will
have non-indexed field values updated by those corresponding fields
in the source table. Using this mode, source table records with no
corresponding records in the destination table are ignored. The
index may be either primary or secondary.

The batAppendUpdate mode works similarly to the batUpdate mode,
with one important difference. Records in the source table with no
corresponding records in the destination table are appended to the
destination. Therefore, when the mode is batAppendUpdate, all
source table records either update existing records, or are added to
the destination table.

Unlike the batAppend mode, there are no key violations when
the batAppendUpdate or batUpdate modes are used. However,
problem records are still possible.

Following the execution of BatchMove using either the
batAppendUpdate or batUpdate modes, you can use the
ChangedCount property to determine how many records were
updated. Furthermore, if you assign a value to the
ChangedTableName property, a copy of each record with a
changed value is placed into a Paradox table of that name.
Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is a developer, trainer, and author of numerous books on
database software. You can reach Jensen Data Systems at (713) 359-3311, or
through CompuServe at 76307,1533.
Mapping Tables
It is possible to use BatchMove when source and destination
tables do not have identical structures. By default, BatchMove
attempts to add or update records between the source and des-
tination on a field-by-field basis. If the field types do not corre-
spond exactly, a best-fit is attempted. For example, if the third
field of a destination table is a seven-character text field, and
the same field of the source table is 10 characters, values longer
than seven characters are truncated when the move is executed.

BatchMove also allows you to move only a subset of fields or
data between fields that are not in corresponding positions with-
in the source and destination tables. This is done using the
Mappings property.

Mappings is a StringList property. It can contain a list of text val-
ues that can take two forms. The first form is to include in each
element of Mappings the field name you want to process as part
NOVEMBER 1995
of the move. For example, regardless of how many fields there are
in the source and destination tables, if you only want to move the
values stored in the source table field named Account_Number to
the destination table field named Account_Number, add the text
Account_Number to the Mappings property. Here’s an example:

with BatchMove1 do
begin

Source := Table1;
Destination := Table2;
Move := batAppend;
Mappings.Clear;
Mappings.Add('Account_Number');
Execute;

end;

The second form you can use with the elements of the Mappings
list is to define field-name pairs. These field names appear sepa-
rated by an equals sign (=). There is a destination field name on
the left-hand side of the equals sign and a corresponding source
table name on the right. Data is only transferred between fields
when field-name pairs are provided. The code in Figure 6 moves
only those fields of the source table specified by the names on
the right of the equals sign to the destination fields on the left.
Conclusion
The BatchMove component is a remarkably flexible tool for
transferring and updating data between tables. It’s also an essen-
tial tool for creating permanent tables from the result sets
returned by SELECT queries and stored procedures. ∆

The demonstration projects referenced in this article are available on the
1995 Delphi Informant Works CD located in
INFORM\95\NOV\CJ9511.ZIP.
Delphi INFORMANT ▲ 29

NOVEMBER 1995

Visual Programming
Delphi / Object Pascal

By Douglas Horn

The ObjectBrowser
An Introduction and Visual Tour
I magine getting a fantastic deal on a new car. Then you discover that not
only does it handle like a dream, it also sports a computerized map. The
salesman didn’t tell you it was there, the owner’s manual only mentions it

in passing, and you didn’t pay extra for it. The only hitch is, no one tells you
how to use it.

If this scenario sounds far-fetched, consider the Delphi ObjectBrowser: a powerful tool that enables
you to inspect applications, as well as Delphi and Windows (see Figure 1). Unfortunately, Delphi’s
documentation on the ObjectBrowser is sparse. This article will demonstrate the ObjectBrowser’s
various features and show you how to use it.
Figure 1: Delphi’s ObjectBrowser allows developers to inspect objects
from their applications, Delphi, and Windows.
Symbols
The ObjectBrowser works with
symbols. For its purposes, a
symbol is just about anything in
a Delphi application. For
example, a form, a button on
that form, and a property of
that button, are symbols the
ObjectBrowser can examine.
Anything Delphi can read,
write, or execute — a constant,
variable, types, property, proce-
dure, etc. — is a symbol.
Developers can choose from three main categories of symbols to search with the ObjectBrowser:
objects, units, and globals:
• Objects include those objects used within a Delphi application (e.g. forms, controls, proce-

dures, and variables).
• Units consist of the class libraries that make up objects.
• Globals are symbols that exist throughout the current application, or outside of it, in Delphi or

the Windows API.

The ObjectBrowser can explore these symbols, provided that certain conditions exist (discussed
later in the article). This makes the ObjectBrowser a powerful tool for understanding the applica-
tions we develop with Delphi, as well as Delphi and Windows.
Delphi INFORMANT ▲ 30

Visual Programming
The ObjectBrowser
Before exploring the ObjectBrowser, it’s important to understand
its parts. In many respects, the ObjectBrowser is a simple tool.
The interface consists of a main screen, two dialog boxes, a
SpeedMenu, and a few other controls.
Figure 2: The Inspector pane lists
information about the object being
inspected.

e 11 Show buttons control the types
e ObjectBrowser will display. From
hey are: Constants, Procedures or
es, Variables, Properties, Inherited,
e, Protected, Public, and Published.

Figure 5: The References page of
the Details pane shows where
symbols appear in program code.
The ObjectBrowser’s primary
control is the Inspector pane
on the left side of the win-
dow (see Figure 2). It lists the
symbols in the area the
ObjectBrowser is currently
inspecting. (The area’s name
appears on the Title bar.)
Double-clicking on a symbol
causes the ObjectBrowser to
inspect the represented
object, and moves the
ObjectBrowser one step fur-
ther down the inheritance tree.
NOVEMBER 1995

Figure 3 (Top): The Scope page
of the Details pane shows all the
symbols associated with the sym-
bol in the Inspector pane. Figure
4 (Bottom): The Inheritance page
of the Details pane displays a col-
lapsible tree of object hierarchies.

Figure 7: The
History list allows
the user to quickly
return to previ-
ously browsed
objects.
The Details pane, on the right
side of the ObjectBrowser, dis-
plays information about the
symbol selected in the
Inspector pane, and consists of
a three-page tabbed notebook.
The first is the Scope page (see
Figure 3), which lists all the
symbols associated with the
symbol in the Inspector pane.
The second is the Inheritance
page (see Figure 4), which dis-
plays a collapsible tree of
object hierarchies. It is a useful
“touchstone” showing where
the current symbol lies in the
scheme of the application.

The third is the References
page (see Figure 5), which
shows where symbols appear in
program code. It lists all
instances of the symbol in the
program, including the code
file and line number (provided
the symbol is within a unit
Figure 8: The ObjectBrowser’s
SpeedMenu.
compiled with the Symbol info parameter as we’ll discuss). This
page offers a direct link to the symbol within the code. Simply
select the reference in the Details pane and press M to high-
light the corresponding line in the Code Editor, or double-click
on the reference to move there directly.

The ObjectBrowser can show many types of symbols:
Constants, Procedures, Types, Variables, and Properties. It
can show statements from the Private, Protected, Public, and
Published sections of the code (if this is enabled on the
Compiler page of the Project
Options dialog box).

The Show buttons at the top
left of the ObjectBrowser con-
trol which symbols are shown
(see Figure 6). By selecting or
deselecting a button, a filter is
applied to both the Inspector
pane and the Scope page of
the Details pane. This allows
users to quickly search for the
various types of symbols.
To the right of
the Show but-
tons are naviga-
tion controls for
returning to pre-
vious symbols:
the Back and History buttons.

Figure 6: Th
of symbols th
left to right, t
Functions, Typ
Virtual, Privat
Clicking the Back button (the left-pointing arrow) moves the
focus of the Inspector pane to the last object inspected — usual-
ly one step back up the inheritance tree. Clicking the History
button calls a list of previously inspected objects (see Figure 7).
Double-clicking on any entry automatically moves the Inspector
pane back to that object.
The status bar of the ObjectBrowser is referred to as the Info
Line. It displays information about the current object in the
Inspector pane or in the Scope page of the Details pane,
depending on which is active.
The SpeedMenu
The ObjectBrowser has no main
menu, but uses a simple
SpeedMenu of eight commands
(see Figure 8). Like most
SpeedMenus, it is accessed by
right-clicking anywhere within
the ObjectBrowser window, or
by pressing A0.
Delphi INFORMANT ▲ 31

Visual Programming

Figure 9: The Objects SpeedMenu
item displays an inheritance tree in
the Inspector pane.

Figure 12:
To enable
the full use of
The first three commands
control the types of informa-
tion displayed in the
Inspector pane. As shown in
Figure 9, Objects displays an
inheritance tree for the appli-
cation being browsed. The
inheritance tree allows the
developer to inspect the over-
all structure of the various
components, procedures, and
properties in an application.
NOVEMBER 1995

Figure 10: The Units SpeedMenu
item lists all the application’s units in
the Inspector pane.

Figu
Spee
Delp
used

ObjectBrowser,
select Debug
Information,
Local
symbols,
and Symbol
info on the
Compiler
page of the
Project Options
dialog box.
Selecting the Units com-
mand lists all the applica-
tion’s units in the Inspector
pane (see Figure 10), while
selecting the Globals com-
mand displays the global,
Delphi, and Windows API
symbols used in the current
application (see Figure 11).

The Symbol command has
the same effect as the
Search | Browse Symbol
command from the Delphi main menu. It allows the user to
search for a specific symbol throughout the current application.
re 11: The Globals
dMenu item displays the global,
hi, and Windows API symbols
 in the current application.
The next two SpeedMenu
commands affect the appear-
ance of items in the Inspector
and Detail panes. When
Qualified symbols is enabled,
it displays each symbol with its
qualified identifier (i.e. its
more complete name in dot
notation). For example, the
symbol ClassName:String
with its qualified identifier is
TObject.ClassName:

String. Although this nota-
tion occupies more space, it is
easier to understand.
When checked, the Sort always command sorts symbols alpha-
betically. If unchecked, the symbols are listed in the order they
are declared in the application. If both Qualified symbols and
Sort always are enabled, the symbols will be sorted by their
names and not their qualified identifiers. Therefore,
TObject.ClassName: string will come alphabetically before
Exception.Create(const string) because the qualified
identifiers TObject and Exception are ignored.

The last two SpeedMenu commands are Show Hints and Info
Line. These control the behavior of ObjectBrowser’s “helping
hands”. When Show Hints is activated, resting the mouse cursor
on one of the Show buttons causes a hint message to appear.
When Info Line is selected, the Info Line is visible. Deselecting it
causes it to disappear.
Enabling and Configuring the ObjectBrowser
For the ObjectBrowser to work properly, certain Delphi program
options must be selected. These are found on the Project Options
dialog box. To access them, select Options | Project from the
Delphi menu, then select the Compiler page (see Figure 12).
In the Debugging group there are three options: Debug infor-
mation, Local symbols, and Symbol info. To get all the infor-
mation the ObjectBrowser can provide, select all three options.

Debug information allows the ObjectBrowser to browse sym-
bols that are declared in the implementation section of the
program modules. If this option is not selected, ObjectBrowser
only sees symbols from the interface part. Local symbols
allows the ObjectBrowser to read those symbols declared local-
ly within program routines (the implementation part).

When Symbol info is not selected, the ObjectBrowser sees only
symbols declared in the interface part of the module. (It still
sees other symbols in the implementation section, provided they
are not declared there.) When enabled, the Symbol info option
allows the ObjectBrowser to display line numbers in the
References page of the Details pane, and jump directly to the
selected line of code while browsing an object. However, neither
Local symbols nor Symbol info have any effect unless the
Debug Information option is selected.

Note: Delphi’s on-line help is confusing in this regard. Under the
topic “Enabling the ObjectBrowser,” it mistakenly reverses the
definitions for Local Symbols and Symbol info.

Using the debugging options increases the size of compiled
.DCU files, but is almost always worthwhile for its debugging
value. Turning the options off shrinks the re-compiled .DCU
file. The debugging options have no effect on the size of exe-
cutable (.EXE) program files.

Since the debugging information is stored in the project’s .DCU
file, once the debugging options are selected, the project must be
compiled or re-compiled for them to take effect. The
Delphi INFORMANT ▲ 32

Visual Programming
ObjectBrowser receives its information from this file. Therefore, if
the current project has not been compiled, the ObjectBrowser will
not run, and the View | Browser Delphi menu option is disabled.

The ObjectBrowser options offered on the SpeedMenu can be
configured via the Environment Options dialog box. From the
menu, select Options | Environment and the Environment
Options dialog box is displayed. Choose the Browser page (see
Figure 13). These settings control the default appearance and
behavior of the ObjectBrowser.
Figure 13:
Use the
Browser
page of the
Environment
Options
dialog box to
configure the
ObjectBrows
er’s default
appearance
and
behavior.
The Symbol filters group contains 11 check boxes that corre-
spond to the 11 Show buttons. The check boxes selected here
will appear as depressed Show buttons in the ObjectBrowser.
The Initial view group of radio buttons controls what will be
shown in the Inspector pane at opening: Objects, Units, or
Globals. Likewise, the Qualified symbols and Sort always
options in the Display group have SpeedMenu commands.

Finally, there is the Object tree group. Entering an object name
(or series of object names separated by semi-colons) into the
Collapse Nodes field instructs the ObjectBrowser to initially
collapse those nodes on the object hierarchy tree.

The options selected from the Environment Options dialog box
take effect only after the ObjectBrowser is re-opened. The excep-
tion is the Display group — Qualified symbols and Sort
always. These commands take effect immediately when the
ObjectBrowser is already running.
Douglas Horn is a free-lance writer and computer consultant in Seattle, WA. He spe-
cializes in multilingual applications, particularly those using Japanese and other Asian
languages. Douglas is also a Contributing Editor to Delphi Informant. He can be
reached via e-mail at internet:horn@halcyon.com.
Using the ObjectBrowser
This brings us to the fun part — using the ObjectBrowser. Its
usefulness is nearly limitless and becomes more helpful as your
developer skills increase.

The most common way to use the ObjectBrowser is to start at the
Code Editor and select Search | Browse Symbol from the menu.
This is useful for finding all other incidences of a particular con-
stant, variable, or procedure. For example, when working with a
variable, it can be very convenient to find all the lines dealing with
that variable (from the time it was declared to the present).

By searching for the symbol and then selecting the Detail pane’s
References page, the developer can view all files and line num-
bers where the variable appears. This even allows direct access to
NOVEMBER 1995
those lines. Note however, that if a reference is modified to no
longer occur on the same program line, the ObjectBrowser can-
not move directly to it again until the project is re-compiled.

Here’s another possibility: If you want to figure out exactly what’s
going on with some aspect of your program — say the Popup
Menus — select Objects from the ObjectBrowser’s SpeedMenu
to get an object hierarchy tree. Now move through the levels from
TObject to TPersistent to TComponent, TMenu — all the way to
TPopupMenu. With TPopupMenu selected, choose the References
page of the Details pane and go to the first reference listed. This
should be the declaration statement in the type section of the
code. If so, it lists the name corresponding symbol (e.g.
PopupMenu1: TPopupMenu;). From here, browse the symbol
directly and repeat it for each TPopupMenu reference until you
find what you’re looking for.

The ObjectBrowser is also an excellent self-guided learning
tool that takes you as deep into the inner-workings of Delphi
and the Windows API as you dare go. For example, this allows
a developer to find the values of all the Delphi and Windows
API constants. Such knowledge can be used for silly things,
like rendering source code practically unreadable to other pro-
grammers by replacing commonly-used constants with their
actual numerical values. (It works, but why bother?)

It’s useful for more practical purposes, as well. As an example,
select Units from the SpeedMenu and select Controls in the
Inspector pane. Then search for the values of the cursor con-
stants. (Typing cr takes you right there.) The various cursor
constants are listed (e.g. crArrow, crDefault, crNone, etc.). Funny,
crNone never appears in the Object Inspector as a possible listing.

Now try this: Create a one-form project and instead of selecting
one of the Object Inspector’s listed constants for the Cursor
property, enter -1, the value found for crNone using the
ObjectBrowser. (Typing crNone returns an error.)

When you run the form, the cursor is invisible. This capability
isn’t apparent from the Object Inspector, and who’s to say you
won’t need it some day?
Conclusion
This is only a small example of what you can find using the
ObjectBrowser. (crNone is a documented constant, but difficult
to find in the documentation.) Who knows what other hidden
pearls lurk in the depths of Delphi? One thing’s for sure — the
ObjectBrowser is the way to find them. ∆
Delphi INFORMANT ▲ 33

NOVEMBER 1995

Informant Spotlight
Delphi / Object Pascal / Windows API

By Tom Costanza

One Bit at a Time
A Serial Communications Primer
and Delphi Implementation Guide
A serial port is a cheap and easy way to connect two or more electronic
devices. Every PC comes with at least one serial port. Most printers
allow for serial input, and an infinite number of bulletin board services

are accessible via a serial port.

The serial port is also used to transfer data from computer to computer with programs such as
LapLink. In an industrial setting, a PC can communicate with dedicated industrial automa-
tion equipment.
Support for Serial Communications: DOS vs. Windows
When Microsoft wrote DOS, they chose to include only minimal support for the asynchronous serial
port. Calls to DOS and the BIOS are provided to initialize the port, and read and write single char-
acters. However, there is no support for interrupt-driven buffered communication. Programmers are
forced to buy a third-party library, or write their own interrupt service routines. And having written
interrupt service routines, I can tell you that it’s no day at the beach. (For more information about
interrupts, see the sidebar “What Is an Interrupt?” on page 36.)

Microsoft mercifully corrected this omission with Windows’ feature-rich API (which we’ll dis-
cuss later). We’ll also look at a simple technique that enables the programmer to read (on
demand) any characters in the receive buffer, as well as send a string of characters.

In addition, we’ll cover a slightly more complicated technique that enables the programmer to
write an event handler to respond to interrupts from the serial port. These interrupts can be pro-
grammed to occur for a number of reasons, including: a character has been received and needs to
be processed; a modem status signal has changed state (e.g. the modem has answered the phone);
and, the transmit buffer is empty.

To understand the Windows API for communications functions, you must first understand how
serial communications is accomplished. Therefore, we’ll discuss generic serial communications, the
PC’s implementation of asynchronous serial communications, and the Windows API. Finally, we’ll
talk about how to implement all this in Delphi.
Serial Communications: A Primer
There are three generic types common to all forms of communications: simplex, half-duplex, and
full-duplex:
• Simplex communication is one-way only. An example of simplex communication is television.
Delphi INFORMANT ▲ 34

Figure 1: The character “A” with odd parity.

Informant Spotlight
While you can see and hear the characters on a television
show, they can’t hear or see you.

• Half-duplex is two-way communication, but in only one
direction at a time. An example of half-duplex communica-
tion is the two-way radios used by police departments. The
dispatcher talks to an officer in a patrol car. Then, the dis-
patcher waits for the officer’s response.

• Full-duplex means both ends of the conversation can talk at
the same time. A telephone is an example of full-duplex
communication.

Serial communications is accomplished by varying the voltage on
a wire. The voltage can be one of two levels. The level for a “1”
or “MARK” is defined as anything between -5 and -15 volts,
with -12 volts being nominal. A “0” or “SPACE” is defined as
anything between +5 and +15 volts, with +12 being nominal.

If a transmitter were to just start varying the voltage on the
line, the receiver would soon become confused about where
one character ends and the next character begins. What is
needed is a way to synchronize the receiver with the transmit-
ter. There are two techniques for this: synchronous and asyn-
chronous communication. Synchronous communications is
outside the scope of this article. Asynchronous communications
is accomplished by re-synchronizing the receiver each time a
character is received. This is accomplished by framing each
character with start and stop bits.
Start, Stop, and Data Bits
With asynchronous communications, a character is sent by mak-
ing the wire sending data from the transmitter to the receiver
change from a 1 (MARK or idle state), to a 0 (zero or SPACE).
This is known as the start bit. Every character sent begins with a
one-to-zero transition. Data bits are then sent, followed by one
or more stop (MARK) bits. A stop bit is created by letting the
line remain idle, or quiescent, for 1, 1.5, or 2 bit times. A bit
time is the time it takes to transmit one bit.

By letting the line remain idle for a period, and since a start bit
is defined as the transition from idle to a MARK state, it is read-
ily apparent to the receiver when a start bit has been received.
When the receiver sees the one-to-zero transition, it waits for
half a bit time and looks at the data line again. If the line is still
zero, the receiver assumes a start bit has been received. If not, it
assumes noise caused the transition, and waits for another one-
to-zero transition. If a start bit has been received, the receiver
samples the line once every bit time.

The data line’s state at the time of the sample is the next bit’s
value. The receiver can maintain synchronization for a short
period of time (the time it takes to receive one character) by
sampling the data line once every bit time. If the sampled volt-
age is positive, the bit is a zero. The bit is a one if the sampled
voltage is negative.

Figure 1 illustrates the transmission of a single character. For sim-
plicity, logic levels rather than voltage levels are shown. Note that
NOVEMBER 1995
the least significant bit is sent first and the parity bit is sent last.
Each time a new start bit is received, the receiver re-synchronizes.
Baud Rate
Baud rate is loosely defined as the transmission facility’s signal-
ing rate. For the purposes of this article, baud rate and bits-per-
second represent the same thing. Therefore, this article will use
the term baud rate to refer to the number of bits-per-second
transmitted from, or received by, the computer’s serial port.

A common baud rate today is 9600. This means that bits are
transmitted at a rate of 9600 bits-per-second. Note that this
does not mean that every second 9600 bits are transmitted. It
means that one bit takes 1/9600 seconds (about 104 microsec-
onds) to transmit.

For the receiver to sample the data line at the correct times, the
receiver and transmitter must agree on the baud rate. Therefore,
if 9600 baud is used, the receiver will sample the data line every
104 microseconds.
Parity
The ASCII character set contains 128 different characters. To
have 128 unique codes, seven bits must be used (2

7
= 128).

When this data is being transmitted over phone lines with
modems, noise on the phone line can often change a 1 to a 0, or
vice versa. While the noise can’t be eliminated, the errors caused
by the noise can be detected.

One technique for detecting these errors is to send an eighth bit,
called a parity bit. The transmitter and receiver must agree as to
what this parity bit will be. (This is why BBS systems say you
must set your communications port to a specific parity.) The
agreement is this: the transmitter will send an even or odd num-
ber of 1’s per character. It’s inconsequential if the parity is even
or odd, as long as both sides agree.

Let’s assume odd parity is used. When a character is sent by the
transmitter, the transmitter sets the eighth bit, the parity bit, as
appropriate, to force an odd number of 1’s to be sent. For exam-
ple, the character “A” has a binary value of 1000001. This value
has an even number of 1’s, so the transmitter sends a 1 for the
Delphi INFORMANT ▲ 35

Informant Spotlight
parity bit, making the total number of 1’s odd. The character
“C” has a binary code of 1000011. This code has on odd num-
ber of 1’s, so the transmitter sends a 0 for the parity bit — leav-
ing the total number of 1’s odd.

At the receiver, the number of 1 bits are counted and compared
to the agreed parity. Suppose that noise on the phone line
changes the code for the character “C” from 1000011 to
1010011 (i.e. the third bit has changed from 0 to 1). As stated
in the previous paragraph, the parity bit is 0. The receiver has
received four bits that are set to 1. Since four is an even number,
and there’s agreement the number of bits set to 1 must be odd,
the receiver knows an error has occurred.

If the number of 1 bits is ever even (when an odd parity was
agreed upon), the receiver knows something is wrong, and gener-
ates a parity error. It should be obvious by now that this tech-
nique works only if no errors occur, or the number of bits that
are inverted is an odd number (i.e. one bit is inverted, or three
bits are inverted, etc.).

If an even number of bits are inverted, the parity will still be cor-
rect, even though the character received is not the character sent.
It should also be apparent that it makes no difference whether a
data bit is inverted, or the parity bit itself is inverted in transmis-
sion. This form of error detection is crude at best. For reliable
data exchange, a more sophisticated method can be used.

Parity is only an option (on PC-style hardware) when seven data
bits (or fewer) are used. When anything but text (e.g. a program,
or a Paradox data file) is sent serially, eight data bits are needed,
because each byte in the data can contain a value from 0 to 255.

The serial port in PC-style hardware will not let you send more
than eight bits per character. If you use all eight bits for data,
there are no bits left to use for parity. So, if eight data bits are
specified, parity is set to “NONE”. This is not much of a loss
since, as discussed earlier, character-by-character parity checks are
not of much value.

For completeness, note that there are two other types of parity:
mark and space. With mark parity, the parity bit is always a mark
(1), and with space parity, the parity bit is always a space (0).
Flow Control and Handshaking
Different serial devices operate at different speeds. For example, a
computer can send characters to a printer at a rate far greater than
the printer’s ability to print those characters. Therefore, it’s usually
necessary to provide some way of telling the transmitter that the
receiver cannot currently receive any more characters, and the
transmitter should suspend transmission until further notice.

There are two commonly used techniques for this. Hardware
flow control uses voltage levels on one or more lines of the RS-
232 interface. For example, the serial port can be configured so
the clear-to-send (CTS) line is monitored to determine if it’s
acceptable to transmit characters. If this line is set to one, the
NOVEMBER 1995
transmitter can send characters. If not, the transmitter should
suspend transmission.

This technique is sometimes used for half-duplex communica-
tion, where one device tells another device, “I have finished trans-
mitting. Now I will receive and you can transmit.” It’s also used
when the two devices are connected by a “hard” cable (a continu-
ous piece of copper from one end of the cable to the other).
Modems and phone lines don’t qualify. It can also be used with
simplex communication. For example, the connection between a
computer and a serial printer can use this type of flow control.

On the other hand, if you are sending data over a modem to
another computer, and if full-duplex communication is possible,
another form of flow control is usually employed. With this tech-
nique, when computer A’s receiver can’t accept any more characters
from computer B, computer A’s transmitter sends a special charac-
What Is an Interrupt?

An interrupt is a piece of hardware’s request for attention
from the processor. Without interrupts, the programmer must
poll the device to determine if the device needs attention.
Here’s an analogy: Suppose you’re at home reading a book
and you want to know if anyone comes to the front door.
One way would be to put down the book every minute or so,
and open the door to see if anyone is there (polling). This
obviously wastes time, since usually no one is there. A more
efficient way would be to install a door bell. Now you can
keep reading your book until you hear the bell ring (inter-
rupt). You can then mark your place in the book and answer
the door only when needed.

When an interrupt occurs, program execution is suspended, and
the processor is directed to an interrupt service routine, a special
subroutine written to deal with the interrupt. When this routine
has completed, the normal program execution is resumed.

Anyone who has installed an interface card in a PC has had to
deal with interrupts. For serial ports, an interrupt may indicate
that a character has been received and must be processed,
the transmit buffer is empty, or some modem status signal has
changed state. The programmer usually has control over
whether an interrupt will occur. If the programmer has enabled
interrupts, then the next question to be answered is this: What
is allowed to cause the interrupt? For example, a program
might want to be interrupted when a character is received, but
not if the transmit buffer is empty. This also is programmable.

In the PC there are interrupt levels that denote the priority of
an interrupt. The higher the number, the lower the priority.
Serial port interrupts have a fairly high priority. While reading
from a disk can be postponed for a second or two, a char-
acter received at the serial port must be retrieved before the
next character is received or the second character will over-
write the first. At 9600 baud, a character can be received
approximately every 960 microseconds.
Delphi INFORMANT ▲ 36

Informant Spotlight
ter (called XOff) to computer B. When computer B sees this char-
acter, it suspends transmission. Later, when computer A can again
accept characters, its transmitter sends another special character
(called XOn) to computer B. When computer B sees the XOn
character, it knows to begin sending data again. This is called
XOn/XOff flow control (the X is an abbreviation for transmit).
The PC’s Serial Port
The original PC had an optional internal card known as the
IBM Asynchronous Communications Adapter that enabled con-
nection to modems and other serial devices. Although this serial
interface has evolved with the PC, and is now usually included
on the motherboard, the software interface has remained the
same for compatibility reasons.

There is a block of I/O address space reserved for the asynchro-
nous communications adapters. The addresses range from $3F8
to $3FF for COM1, and $2F8 to $2FF for COM2. A set of
registers in this address space allow the programmer to config-
ure the port, send and receive characters, and read and write
modem control signals and status bits. (A register can be
thought of as a single memory location, although it’s separate
from the computer’s RAM.)

Most of these control and status bits are available through the
Windows API. For example, the programmer can tell when the
DSR line changes state, but cannot read its current value. (DSR
is an acronym for Data Set Ready. A complete listing of signals
used in serial communications is shown in Figure 2.) The DSR
signal is sent by a modem to its attached computer to indicate
it’s ready to operate.

To obtain this signal’s current value, the programmer can
access the modem status register directly, and many DOS
programmers will be tempted to do just that. This is a bad
idea, since one of Windows’ strengths is its device indepen-
dence. If the vendor of a new serial port uses some new hard-
ware, that vendor can supply a new device driver for the port,
and your old program won’t need to be changed. If however,
NOVEMBER 1995

Figure 2: Signals used in serial communications with cable-connector
pin numbers.

Signal Description Pin Number Pin Number
on 25-Pin on 9-Pin
Connector Connector

TxD Transmit Data 2 3

RxD Receive Data 3 2

RTS Request To Send 4 7

CTS Clear To Send 5 8

DSR Data Set Ready 6 6

SG Signal Ground 7 5

DCD Carrier Detect 8 1

DTR Data Terminal Ready 20 4

RI Ring Indicator 22 9
you let your program talk directly to the hardware, you may
need to change it if the hardware changes.

In Object Pascal (as well as earlier versions of Pascal) the com-
mand to read or write to an I/O register is Port[x] for byte val-
ues, and PortW[x] for 16-bit (word) values, where x is the port
address to be read or written. (This syntax is well-noted in the
Turbo Pascal User Guide, but I have not found it in the Delphi
documentation.) The communications adapter registers are 8-
bits (1 byte) wide, so the command to read the modem status
register at address $3FE is:

val = Port[$3FE]

The DSR bit is bit 5. To isolate that bit, we must perform an
AND operation with the value read from the register with a
mask that has a 1 at bit 5, and 0’s at all other bit locations. In
binary, this is 00100000; in hexadecimal it’s $20. Thus the
statements:

val := Port[$3FE];
val := val AND $20;

will set val to 0 if DSR is low, or 32 ($20) if DSR is high. (For
more information about AND operations, see the sidebar
“Masking Bits with the AND Operator” on page 38.)

A better way (that is undocumented in the Windows Software
Development Kit) makes use of an extended device control block
(or DCB). Within this extended DCB is a field called
MSRShadow (modem status register shadow). This is a copy of
the modem status register on the UART. MSRShadow is located
35 bytes past the event word for the desired port. The event
word’s address is returned by the SetCommEventMask function
(which we’ll discuss later).

The following Object Pascal code reads the MSRShadow word:

procedure TMainForm.GetMSR;
var x: PWord;

z: byte;
begin

{ Get pointer to event word. }
x := SetCommEventMask(hCommPort,constCommEvents);
{ MSRShadow byte is 35 bytes past this pointer. }
word(x) := word(x) + 35;
{ Get MSRShadow byte and display it. }
z := x^;
Edit2.Text := intToHex(z,2);

end;

Again, this code isolates the DSR bit:

z := z AND $20;

(Additional information on the asynchronous communications
adapters and register addresses can be found in the IBM Personal
Computer Technical Reference Manual.)
Windows API Functions
Delphi can communicate with the serial port through the
Delphi INFORMANT ▲ 37

Informant Spotlight
Windows API. The API communicates with the serial port via a
DCB. The actual DCB is a component of the device driver
(COMM.DRV). You edit this DCB by declaring a Delphi vari-
able, setting the fields of the variable, and setting the actual DCB
with your copy of the DCB using the SetCommState function.

The variable declared in the Delphi program is of type TDCB. A
TDCB is a Pascal record (or a structure in the C language) that
contains several fields (baud rate, parity, etc.) describing how the
serial port is configured. The Windows API help that ships with
Delphi contains excellent documentation on each field — just
search on TDCB. The following Windows API functions are
used in the demonstration form, Communications Demo #1.
(Again, for more information about these functions, use
Windows API Help.)

OpenComm. This function opens a COM port and allocates
memory for the buffers. The COM port to be opened is one
parameter, and the other two parameters are the sizes of the
input and output buffers. OpenComm returns an integer iden-
tifying the opened port. This identifier is used by many other
communications functions listed here.

BuildCommDCB. This function is a quick way to initialize a
TDCB variable. It takes two arguments: A null-terminated
string of the form:

‘COMx,BaudRate,Parity,DataBits,StopBits’
NOVEMBER 1995
where x is the port number (e.g. ‘COM1,9600,N,8,1’), and the
TDCB variable that is passed by reference. Any fields in the
DCB that are not specified in the parameter string are set to
their default values. This function does not set the COM port to
the settings specified in the TDCB variable. SetCommState does
that. BuildCommDCB returns zero if successful. Otherwise, it
returns less than zero.

SetCommState. This function sets the COM port to the set-
tings specified in the TDCB variable. The TDCB variable is
the only parameter for this function. The API knows which
COM port to set because the COM port is specified in the
TDCB variable itself. This function returns zero if successful.
Otherwise it returns less than zero.

SetCommEventMask. This function enables selected events for
the specified COM port. The two parameters are the ID of the
port (returned by OpenComm) and a mask for the appropriate
events. The mask should contain a bit set to 1 for each event to
be enabled. Enabled events are recorded in the event word.
GetCommEventMask will retrieve the event word.

EnableCommNotification. This function enables or disables a
Windows message (WM_COMMNOTIFY) being posted to a
window. Messages are disabled by default. The function takes
four parameters:
1) The communications device in question.
2) The window to which messages are to be posted.
3) A parameter indicating the number of bytes the input buffer

must contain before a message is sent to the application. A
message is sent if the number of characters in the input
buffer exceeds this number. It’s a notice that the application
must read characters from the input buffer or there will
soon be no more room in the buffer. If this parameter is set
to -1, the message for this event is disabled.

4) A parameter indicating the minimum number of bytes the
transmit buffer must maintain without sending a message
to the application. A message is sent if the number of bytes
in the transmit buffer falls below this number. It’s a notice
to the application that the transmit buffer will soon be
empty. If this parameter is set to -1, the message for this
event is disabled.

GetCommEventMask. This retrieves the event word for the
desired port, and then clears those bits in the event word that are
specified by the event mask. The two parameters are the port’s
ID (returned by OpenComm) and a mask for the appropriate
events. This function returns the entire event word for the speci-
fied port, regardless of the event mask.

GetCommState. This function retrieves the device control
block for the specified port. It takes two parameters: the
port’s ID (returned by OpenComm), and a reference to the
TDCB variable.

ReadComm. This reads characters from the device driver’s inter-
nal serial buffer. It takes three parameters: the serial port’s ID
Masking Bits with the AND Operator

Good programmers won’t waste a whole byte of memory to
store a logical (yes/no, on/off, etc.) value. Only one bit is
required. This means a programmer can store eight logical
values (sometimes called flags) in one byte of memory.

It’s clear that you need a
way to isolate one particular
flag in a byte. This is done
with the AND operator. The
truth table for the AND
operator is shown in Figure
A. The programmer masks
off every bit except the one
of interest, and then com-
pares the result to zero. If the result is zero, the bit in question
is 0. If the result is non-zero, the bit in question is 1. In Figure
B, bit 3 is the one we are interested in.

Figure A: The truth table for the
AND operator.

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

Figure B: Masking off bit number 3.

Bit number 7 6 5 4 3 2 1 0

Memory byte holding flags var1 1 0 0 1 1 0 1 1

Mask var2 0 0 0 0 1 0 0 0

var1 AND’ed with var2 0 0 0 0 1 0 0 0
Delphi INFORMANT ▲ 38

Informant Spotlight

Figure 3:
The example
Communica-
tions Demo
#1 applica-
tion in
action.

Figure 4: By selecting the
Setup button on either the
Communications Demo #1 or
#2, this CommSetup dialog box
appears.
(returned by OpenComm); a pointer to the buffer to receive the
bytes read; and the number of characters to read. If the function
is successful, it returns the number of bytes read. If unsuccessful,
it returns less than zero, the absolute value of which is the num-
ber of bytes actually read.

WriteComm. This function sends a buffer of information to
the serial port for transmission. It takes three parameters: the
serial port’s ID (returned by OpenComm); a pointer to the
buffer holding the characters to be written; and the number
of characters to write. If the function is successful, it returns
the number of bytes written. If unsuccessful, it returns a
value less than zero, the absolute value of which is the num-
ber of bytes actually written.

GetCommError. When a communication error occurs,
Windows locks the COM port until the programmer calls
this function. The ReadComm and WriteComm functions
will return an error if called before this function. However
the port will, if able, continue to receive characters, and
transmit whatever characters are currently in its transmit
buffer.

This function takes as parameters the COM port to be
checked (the OpenComm function returns this value), and a
record (structure) of the type TCOMSTAT. After the call to
the GetCommError function, the TCOMSTAT structure will
contain status information for the COM port. Information
such as “Transmission has been suspended because of recep-
tion of an XOff character” can be obtained from the TCOM-
STAT record. GetCommError returns an integer. Each bit of
the integer represents one type of error. The return value can
be a combination of these bits. The programmer can then
decode these bits and find the reason for the error.

EscapeCommFunction. This function directs the specified
communication device to carry out an extended function.
The first of two parameters is the COM port that will carry
out the function (OpenComm returns this value). The sec-
ond parameter is an integer specifying which function to
carry out. EscapeCommFunction is used in sample form,
Communications Demo #2, to set and clear the RTS
(Request To Send) and DTR (Data Terminal Ready) signals.
It returns zero if successful, less than zero if unsuccessful.

CloseComm. In the demonstration form, this function is called
by the FormDestroy event, and transmits any characters left in the
transmit buffer, closes the COM port, and then releases any
memory allocated for the transmit and receive buffers. It returns
zero if successful, less than zero if unsuccessful.
Basic Serial Communications with Delphi
The Windows device driver for the COM ports is interrupt-dri-
ven. This means your Delphi program does not need to respond
to each character received at the port. Windows is interrupted
when each character is received. Windows then takes the charac-
ter received at the port and places it in Windows’ own input
NOVEMBER 1995
buffer. You only need to ensure that you remove characters from
this buffer before the buffer becomes full.

The first demonstration program, Communications Demo #1,
relies on the operator to click a button to get characters from the
buffer. It also relies on the operator to click a button to send what-
ever is in the transmit window. Communications Demo #1 has
four buttons and two memo fields on the main form (see Figure 3).
The OnClick event handler for the Read button takes the
characters in the receive buffer and adds them to the adjacent
memo field:

if ReadComm(hCommPort,inBuf,RecBufSize) > 0 then
Memo1.Text := Memo1.Text + StrPas(inBuf);

The OnClick event handler for the Write button takes the
characters in the lower memo field and copies them to the
transmit buffer.

StrPCopy(outBuf,Memo2.Text);
rVal := WriteComm(hCommPort,outBuf,StrLen(outBut));
The Windows communica-
tions device driver
(COMM.DRV) then sends
these characters through the
serial port. The baud rate,
parity, data bits, and stop bits
can be set-up by selecting
Setup from the main menu
(see Figure 4).

Windows serial communica-
tions is interrupt-driven since
Windows (without any inter-
vention from any application

program) places received characters in a receive buffer, and
transmits characters from a transmit buffer. This is accom-
plished by the Windows communications device driver
COMM.DRV. If you want Windows to interrupt your
Delphi program, you must write the appropriate code to
intercept Windows messages.

Programmers new to Windows may be unfamiliar with the
interaction between the application program and the Windows
operating system. In the DOS world, the application takes
Delphi INFORMANT ▲ 39

Informant Spotlight

Figure 5:
The example
Communications
Demo #2 applica-
tion displays the
character it
received in the
Memo component.
total control of the computer, and calls the DOS operating
system for various services. In Windows, while the application
still calls the operating system for services, the operating sys-
tem can make calls to the application. In Windows terminolo-
gy, Windows sends a message to the application.

Windows responds to events by sending messages to an appli-
cation. Most of these messages are handled behind the scenes
by Delphi. Delphi converts these messages into appropriate
events (OnClick, etc.) for each component. Delphi programs
respond to these events using event handlers — procedures
that process the keystroke, mouse click, etc. However, what is
needed is a way to respond to serial port events.

By default, each Delphi application declares a variable,
Application, of the type TApplication. Using this variable, you can
write event handlers, not for individual components, but for the
application itself.

First, write an event handler that is called for, but does not
need to process, all Windows messages. In the second sample
application, this handler is called MsgHndlr. You then tell
Delphi about this event handler. This is done in the
FormCreate event handler:

procedure TMainForm.FormCreate(Sender: TObject);
begin

Application.OnMessage := MsgHndlr;
end;

Now, whenever Windows sends a message, MsgHndlr will be
called, and will have an opportunity to intercept the message.
MsgHndlr is called with two parameters. The first is a variable of
the type TMsg, a structure in which Windows places information
about the message, including the type of message. The message
for communications events is called WM_COMMNOTIFY. You
can test for communication events with the following code:

procedure TMainForm.MsgHndlr(var Msg: TMsg;
var Handled: Boolean);

begin
if Msg.message = WM_COMMNOTIFY then

begin
{ Process the communication event here. }

end;
end;

The second parameter tells Windows if it should handle the
event. If you set Handled to True, then Windows/Delphi will
not do anything with the message. Conversely, if Handled is set
to False, then Windows/Delphi performs the default processing.

The Communications Demo #2 (see Figure 5) responds to
received characters by displaying them in the Memo component
at the top of the screen. This is in contrast to the first sample
form that required some user event (i.e. a button click) to read
the receive buffer and display the characters.

The MsgHndlr procedure requires a test to determine why the
WM_COMMNOTIFY message was sent. If it was sent
NOVEMBER 1995
because a character was received, the program should get the
character and place it in the Memo component’s window. The
code for the message handler accomplishes this by testing the
right-most bit in the event word (returned from the
GetCommEventMask function). If the bit is set, a character
has been received. Otherwise, the message was sent for some
other communications event:

if Msg.message = WM_COMMNOTIFY then
begin

if (GetCommEventMask(hCommPort,constCommEvents)
and 1) = 1 then

ReadCommPort;
GetMSR; { Examine modem status register. }

end;

How does Windows know for what events to send the
WM_COMMNOTIFY message? Your program must tell
Windows the events you’re interested in. You do this with the
SetCommEventMask function which takes two parameters.

The first is a handle to the port (the value returned by the
OpenComm function). The second is a mask with bits set for
each event in which you are interested. (These bits are
described in Windows API help.) Communications Demo #2
is configured so a WM_COMMNOTIFY message is sent if
one or more characters are in the receive buffer, or if the
CTS, DSR, or DCD lines change state. SetCommEventMask
is called in the FormCreate event handler for the main form.

Communications Demo #2 also displays the state of the CTS,
DSR, and DCD lines by changing the color of the labels to red
if the signal is asserted. It does this by examining the modem sta-
tus register and updating the display each time a WM_COMM-
NOTIFY message is received for any reason.

The output signals RTS and DSR are set or cleared using the
EscapeCommFunction function:

procedure TMainForm.btnDTRClick(Sender: TObject);
begin

{ SetDTR & ClrDTR are constants defined in WINTYPES.PAS }
if btnDTR.Checked then

EscapeCommFunction(hCommPort,SetDTR)
else

EscapeCommFunction(hCommPort,ClrDTR);
end;
Delphi INFORMANT ▲ 40

Informant Spotlight
Conclusion
Learning to program a computer is similar to learning to play
the piano. You can’t learn how to do it by just reading about it.
The documentation for writing serial communications programs
is so thin, there isn’t much to read anyway.

Feel free to experiment with the two sample applications. It’s
possible to connect two PCs together with serial cables and a
null modem adapter (available at most computer stores and
electronic distributors). A null modem adapter makes each com-
puter think it is connected to a modem. Then run the demon-
stration programs on both computers and send characters back
and forth. Make small modifications to the program and
observe the results. A few hours of creative playing should have
you on your way to using the serial port in your programs. ∆

The demonstration programs referenced in this article are avail-
able on the 1995 Delphi Informant Works CD located in
INFORM\95\NOV\TC9511.
NOVEMBER 1995 Delphi INFORMANT ▲ 41

Tom Costanza is the founder of Costanza & Associates in Langhorne, PA, providing
development tools, programming, and training since 1989. He can be reached at
(215) 752-5115, or on CompuServe at 76615,2154.

Borland RAD Pack for Delphi
What It Is, Why You Need It

New & Used
b y T i m F e l d m a n
E ven if you never use the VBX controls in
Borland’s RAD Pack for Delphi, its other ele-
ments make the package well worth its

price. Besides the Visual Basic controls, the RAD
Pack contains Delphi-compatible versions of
Borland’s classic Turbo Debugger and Resource
Workshop tools; the source code of the Visual
Component Library (VCL); a new Resource Expert
for the Delphi IDE; and a patch kit for the first
release of Delphi. There are also hardcopy manu-
als for the VBXes and the Turbo Debugger, and a
hardcopy version of Object Pascal Language Guide.
About the only thing missing is hardcopy of the
Visual Component Library Reference.

It’s no secret that Borland has fallen back upon its core
strength — development tools — to survive in today’s PC
software business. Delphi is critical to Borland’s future. The
first release of Delphi earlier this year must have involved
tough marketing decisions. The package had to be small
enough to be irresistible to independent developers, but com-
plete enough to avoid being rejected as a “toy language.”
Borland couldn’t throw the kitchen sink into its initial release
of Delphi or it would have been too expensive. By releasing
Desktop and Client/Server versions of Delphi, Borland seems
to have made the right marketing decisions. Delphi appears
to be well on its way to success. Now Borland has released the
Delphi RAD Pack, which rounds out the IDE with tools that
most serious developers will want to have.
Installation
The RAD Pack software comes on a single CD-ROM and
eats up about 25MB of hard disk. A four-page printed
NOVEMBER 1995
“Roadmap” explains
what’s in the RAD
Pack and gets you
started on the installa-
tion. The installation
program had one small
problem — it tried to
write the VCL source
code to my CD-ROM
— but I overrode it
easily.

After I finished the

Windows installation, I followed the README.TXT instruc-
tions and used DOS to patch the Delphi IDE from the RAD
Pack’s CD-ROM. There was no need to patch the VCL
source code or rebuild the IDE’s component library.
The VBXes
The RAD Pack includes volume 1, version 1.1 of Borland’s
Visual Solutions Pack for Windows. This is a collection of
VBXes written by commercial vendors. Perhaps the key word
here is “commercial” — many of the VBXes are less-powerful
versions of other packages from the vendors. That the controls
are limited versions is not mentioned in the RAD Pack’s docu-
mentation, but if you activate their “About” property at design
time, many of the controls display dialog boxes that read like
magazine advertisements for the full versions.

The About boxes also reveal that the VBXes are of 1993/94
vintage. Older VBXes that predate Delphi, such as those in
the Visual Solutions Pack, are more likely to suffer in compari-
son to Delphi’s object-oriented VCLs. For example, they may
not be data-aware nor do a good job of wrapping complexity
in an easy-to-use set of properties and methods. In addition,
Delphi INFORMANT ▲ 42

From the Borland Visual Solutions Pack, the TX work processor VBX in
action.

New & Used
using VBXes in commercial software requires you to redistrib-
ute and properly install .VBX and .DLL files.

Despite these limitations, if you buy the RAD Pack, you’ll be
curious about the VBXes. You’ll want to install them in the
IDE and try them. I installed all the VBXes easily — there
are clear instructions in the RAD Pack Roadmap and several
other places.

Using them, however, was a different story. The first VBX I tried
was AniButton (for “Animated Button”) from DesaWare. Drop
this simple little gadget on a form, give it an event to handle,
and it works much like a normal button. The only typical but-
ton events it doesn’t handle are OnMouseMove, OnMouseDown,
and OnMouseUp.

The difference with AniButton is its appearance. If you don’t
give its Picture property a value, it looks like a standard Edit
control (a plain white rectangle). The fun comes after you use
its Picture and Frame properties to specify a set of bitmaps for
it to animate. The AniButton will play the pictures back on an
event, showing a little cartoon movie on its surface. Other
properties let you stretch the bitmaps, change their playback
rate, and modify the animation so that some bitmaps play
when the button is pushed, and the rest play when the button
is released. The AniButton is cute, easy to use, and quite flexi-
ble. It’s data-aware and similar to a true Delphi VCL. I had
fun playing with it.

Heartened, I tried another, more complex VBX: the
ImageKnife component from Media Architects, Inc. The
ImageKnife is billed as a super-charged version of the IDE’s
standard Image component. It can display advanced image
formats, perform simple image processing operations, and
manipulate the image’s color palette. Or rather, the
ImageKnife should be able to do all those things. I don’t
know if it can or not, because I could not make it work.

Perhaps the ImageKnife’s Delphi interface isn’t complete, or its
documentation skips some crucial step. I had no problems
installing the ImageKnife VBX or dropping its visual control,
PicBuf, onto a form. PicBuf ’s design-time properties worked, as
did some of its run-time-only properties and methods. Some of
the run-time methods compiled without problems, but many of
them — including the ones that load an image file into PicBuf
— were unrecognized by the compiler. The interface file to the
VBX (KNIFE.PAS) appears to be valid, but omits references to
many of the properties and methods described in the Visual
Solutions Pack Reference Guide.

I was curious about this quiet failure. Knowing that the Visual
Solutions Pack also supports C++ and dBASE (the hardcopy
user guides for both languages are included), I looked at the
ImageKnife example programs in C++ and dBASE on the RAD
Pack CD-ROM. Those examples do support the image load
function. Unfortunately, the only Delphi examples on the CD-
ROM are for the simpler VBXes and the TX Word Processing
NOVEMBER 1995
controls. There are no examples for the ImageKnife control.
The ImageKnife documentation shipped with the VBXes is
no help. The massive hardcopy Reference Guide (nearly 1,000
pages) and the ImageKnife on-line Help file both predate
Delphi and lack programming examples. The Reference Guide
has several chapters about the ImageKnife control (also with
no examples).

A thin (36-page) Visual Solutions Pack User’s Guide for Delphi
contains what appears to be an excellent tutorial — on one of
the other VBXes. It has nothing about the ImageKnife VBX.
In fact, the only VBX it discusses in detail is the tutorial’s set
of TX Word Processor components. While this makes some
sense (re-writing the entire Reference Guide for Delphi would
probably have been prohibitively expensive), it’s an indication
that mastering the more complex VBXes may be a “learning
experience.”

In the end, I abandoned efforts to make the ImageKnife VBX
work since I had no real-world need to use it. If I did need to
work with images, I would probably look for a true Delphi VCL
rather than a VBX.

The VBXes in the Visual Solutions Pack include:
• AniButton Animated Buttons by Desaware
• Chart Controls by Kansmen
• Formula One Spreadsheet Controls by Visual Tools
• Gadgets by MicroHelp
• ImageKnife Image Editor Control by Media Architects
• Integra Visual Database Builder by Coromandel Industries
• SaxComm Communications Tools and SaxTabs Notebook

Tab Controls by Sax Software
• TX Word Processor Controls by European Software Connection
The VCL Source Code
Disappointing as the VBXes are, the VCL source code inspires
the opposite feeling. For experienced developers, the source code
is an exciting treasure. I have always found that no matter how
well a development environment is documented, there are ques-
tions that can only be answered by “looking under the hood.”
For that, you need the source code to the library routines. And,
Delphi INFORMANT ▲ 43

New & Used
as you try to master the new environment, you’ll never find
enough example programs. The source code helps fill that void.
Installing it adds hundreds of files under \DELPHI\SOURCE in
three subdirectory trees.

The IDE displays special dialog boxes to help you set certain
design-time component properties. For example, to set the
Picture property for an Image component, the IDE displays a
Picture Editor dialog box. The \DELPHI \SOURCE\LIB tree
contains the source code for those special dialog boxes.

The \DELPHI\SOURCE\RTL tree contains the Delphi run-
time library (RTL) source code. The \RTL\SYS subdirectory is
where the string, math, and other “primitive” routines are
implemented in .ASM and .PAS files. Do you need to see how
random numbers really work in Object Pascal? Check the code
in RAND.ASM. Are you trying to figure out what the real dif-
ferences are between New and GetMem, and are you confused
by the printed documentation and on-line help? Search for
“NewPtr” in SYSTEM.PAS and WMEM.ASM. You might be
surprised by what you find!

The \RTL\WIN subdirectory holds the interface .PAS files that
join Delphi to the Windows 3.1 APIs. Here, you can discover
how Delphi connects to Pen Windows, to the Windows
Common Dialogs, and to other APIs that aren’t even mentioned
in the Delphi documentation.

If you want to translate Delphi’s run-time error messages into
another language, you’ll want the English, French, and German
subdirectories in the \RTL\SYS tree. Example files in all three lan-
guages show how to recompile the RTL to change the messages.

Finally, the \DELPHI\SOURCE\VCL tree contains the Delphi
source code to the VCLs in the IDE’s Component Palette (except
for the sample VBXes — their source code is not given — and the
Sample VCLs, whose source code is shipped with Delphi in \DEL-
PHI\SOURCE\SAMPLES). This source code is an absolute must-
have for any developer creating custom visual components. Foreign-
language developers will also want the English, French, and German
resource files, which define the error message strings in all the VCLs.

Note that the source code package does not supply the source code
for other parts of Delphi, such as the Image Editor or the IDE’s text
editor. And, of course, if you have the Client/Server version of
Delphi, you already have the source code. It’s also available separate-
ly from Borland for approximately US$100. Since that is almost as
much as the RAD Pack’s street price, it makes sense to get the RAD
Pack. Its additional tools are easily worth the price difference.
The Turbo Debugger
The Delphi IDE’s Integrated Debugger does a very good job of
debugging at the Object Pascal level. But when you need to grab the
CPU by its registers and shake it, you need the Turbo Debugger.

The Turbo Debugger does things the Integrated Debugger can’t
do. It logs debugging sessions to a disk file, records your key-
NOVEMBER 1995
strokes, steps backward through your code, and examines the
CPU and system memory directly. It runs on a second video dis-
play, or on a second computer over a network or serial link. It
contains its own assembler, disassembler, and expression evalua-
tor. It supports C, C++, and Object Pascal, and understands
objects, exceptions, and properties. It debugs DLLs, monitors
Windows messages, and even performs hardware debugging by
taking advantage of the debug registers in 386 and higher
processors. This lets the Turbo Debugger detect CPU accesses to
specific memory and I/O addresses, or with specified ranges of
data values. In short, it handles industrial-strength bugs.

The version in the RAD Pack is Turbo Debugger 4.6 for
Windows only. Unlike separate Turbo Debugger packages from
Borland, the RAD Pack doesn’t include DOS and Win32 ver-
sions of it (nor Borland’s Turbo Assembler). Those won’t be
serious shortcomings for most Delphi developers.

A 144-page manual specifically for Delphi/Object Pascal users is
included. Along with several text files on disk, it covers the
basics of configuring and using the Turbo Debugger. While the
manual is well-written, it falls short in one area: it does not con-
tain any tutorials. There are no sample Delphi programs with
subtle captive bugs for you to practice on. Because of this, you
will probably defer learning to use the Debugger until the worst
possible time: when a real bug bites you and your code needs to
ship in a hurry. But at least when that does happen, there’s an
excellent tool to help fix your code.
The Resource Workshop
The last major tool in the RAD Pack is Borland’s Resource
Workshop, version 4.5. It lets you edit the Windows resources
used in your program.

The most common editable resources are icons, bitmaps, and
menus. The Delphi IDE contains built-in support for editing
those resource types. For example, IDE’s Image Editor can be
used to work on icons, bitmaps, and several other resource
types. However, just as the Turbo Debugger is more powerful
than the Integrated Debugger, the Resource Workshop is more
powerful than the Image Editor. The Workshop has more tools
and options. More importantly, the Resource Editor is more
stable than IDE’s Image Editor, which has been known to crash
on occasion. I found the Resource Workshop’s stability well
worth the price.

If you want to define custom fonts for your applications, you’ll
want the Workshop. If you want to internationalize your pro-
grams by having them load their strings at run-time, you’ll find
putting the strings into a resource file created by the Workshop a
good method. You can even use the Workshop to extract the
resources from a .DLL or .EXE file, modify them, and then bind
them back into the same executable file.

If your application needs a custom resource — perhaps special
binary data, or a large block of text to be displayed at run-time
— the Workshop will help you define, edit, and manage it.
Delphi INFORMANT ▲ 44

Borland’s Resource Workshop.

New & Used
With all these capabilities, it’s a shame the Resource Workshop
isn’t well documented. Borland did not include a hardcopy man-
ual in the RAD Pack. However, there are several language-inde-
pendent Windows help files that do an average job of making up
for the missing manual. A single short README.TXT file dis-
cusses installing and using the Workshop with Delphi. Beyond
that, you’ll have to learn about the Workshop by tinkering with
it. It’s worth the time.
The Resource Expert
If you have developed Windows applications in other lan-
guages, you’ve probably worked with .RC files. These are the
files that define the Windows resources created with the
Resource Workshop or similar tools. They’re a kind of source
code or script file written in a language defined by Microsoft.
Delphi supports .RC files indirectly. After they have been
compiled into .RES or .DFM files, Delphi can link them into
your application. That’s what the mysterious little {$R *.DFM}
compiler directive in the implementation part of a Delphi
form’s unit is for. It tells the compiler that any .DFM resource
files in the project’s directory should eventually be linked into
the application.

Normally, you use the IDE to compile Delphi components
into .DFM files or the Resource Workshop to compile .RC
files into .RES files. Then, you manually rename the .RES
files to .DFM files so Delphi will link them into your appli-
cation. But, if you have developed a large number of .RC files
containing menus or dialog boxes, you may want to convert
them into Delphi menus and dialog box forms. That is what
the Resource Expert does. After they have been converted,
you can manipulate them within the Delphi IDE as if you
had defined them using the IDE’s usual tools.

The Resource Expert is a new plug-in for the IDE. After
installing it and configuring the IDE, the Resource Expert
appears alongside the Database Form and Dialog Experts in
the Experts page of the Browse Gallery whenever you create a
new form. If you activate the Resource Expert, it asks for the
location of the .RC and support files you wish to convert.
Then it processes those files and displays the new form on
NOVEMBER 1995
your screen. The form contains the menu or dialog box
defined in the .RC file. From that point on, the new form
behaves exactly as if you had created it by hand, and you can
discard the old .RC and support files.

I had no problems converting old .RC scripts with the Expert,
even though its only documentation is a Windows Help file.
Installing the Resource Expert hooks it into the IDE’s Help menu
so the Expert starts when you select Help | Resource Expert. The
Database Form Expert and Interactive Tutors are also wired into
the Help menu the same way. It’s a startling effect — you’re
expecting a Windows Help file to pop up, not a separate applica-
tion — but after working with it for a while, I grew to like it.

Even though the Resource Expert was released after Delphi
shipped, it fits into the IDE perfectly. It’s a nice example of the
forward thinking in Delphi’s design. I wonder how quickly other
vendors will start developing their own plug-in experts for the
Delphi IDE. Most of the source code for the Resource Expert is
provided with the RAD Pack.
The Patches
A few months after Delphi’s official release, Borland issued free
patches to the VCL and its source code, and to both the
Desktop and Client/Server versions of the Delphi IDE. These
version 1.01 patches apply to the Delphi files dated 2/15/95
8:00 am. The patches are available from Borland’s CompuServe
and ftp sites, and are also part of the RAD Pack.

The patches fix a number of relatively minor bugs in Delphi. I
never noticed the differences after installing them. A complete
list of the bugs is included with the patch kit.
The Object Pascal Language Guide
When Delphi was released, users were quick to praise it. They
were also quick to complain about the skimpy documentation
that shipped with the Desktop version of Delphi. I recently had
the opportunity to ask Borland’s Phillipe Kahn if Borland had
decided to change their future policy on hardcopy documenta-
tion because of all the loud complaints. He replied that they
were “satisfied” with their practices.

Still, Borland responded to the complaints by making an Adobe
Acrobat version of the Object Pascal Language Guide available at
no cost on their CompuServe and ftp sites. They have also
announced the 32-bit version of Delphi will include a hardcopy
version of the Guide, and a copy is part of the RAD Pack.

At 290 pages, the Guide goes into some depth about the lan-
guage Delphi is built upon. It’s a reference, not a tutorial, but
contains plenty of code snippets. Its 20 chapters and three
appendices cover all the details of the Object Pascal language,
the compiler/linker, and the built-in assembler.

The Guide also covers the basic parts of the Object Pascal RTL,
including strings, I/O, and memory issues. An interesting point
is that Object Pascal and Delphi are not synonymous. Object
Delphi INFORMANT ▲ 45

New & Used
Pascal is the core upon which Delphi’s IDE and the VCL are
built. By itself, Object Pascal could compile DOS applications (if
DOS RTLs were supplied; they are not). Therefore, the Object
Pascal Language Guide says little about Windows or Delphi. It
does, however, include a short chapter about Windows DLLs
and a section on using the WinCrt unit to produce text-oriented
Windows applications. The Guide’s main purpose is to explain
the Object Pascal language succinctly. It does that quite well.
land's RAD Pack for Delphi is a
ection of tools, source code, and
umentation that enhances the
phi IDE. It includes version 1.1,
ume 1 of the Visual Solutions
k; Delphi-compatible releases
urbo Debugger and Resource
rkshop; a new Resource Expert
the IDE; patches for the initial
ase of Delphi; the source code
Delphi's Run-Time Library and
al Component Library; and a
ted copy of the Object Pascal
guage Reference. The Visual
utions Pack is the only weak
ect of an otherwise must-have
kage for serious Delphi devel-
rs.

land International
 Borland Way
tts Valley, CA 95066-3249
ne: 1-800-336-6464

ernet: http://www.borland.com
puServe: GO BORLAND

e: $US189.95
The (Missing) VCL Reference
If Object Pascal is the hidden
foundation upon which Delphi is
built, the VCL is the elegant
structure that we think of as
Delphi. The definitive guide to
that structure is Borland’s Visual
Component Library Reference, a
1,000 page hardcopy manual.
Unfortunately, it’s not part of the
RAD Pack. It would have been
better to include the Reference
than the entire Visual Solutions
Pack of VBXes.

The hardcopy Reference is available
separately from Borland. An
Adobe Acrobat version of the
Reference is also available.
Curiously, it’s not included in the
RAD Pack. It can be downloaded
from Borland’s CompuServe and
ftp sites. The file is about 5MB in
size when expanded. I find it
essential for serious development work.

Bor
coll
doc
Del
Vol
Pac
of T
Wo
for
rele
for
Visu
prin
Lan
Sol
asp
pac
ope

Bor
100
Sco
Pho
Int
Com
Pric
Conclusion
If you are a Delphi developer, you should get the RAD Pack for
its VCL and RTL source code, its tools, and the hardcopy Object
Pascal Language Guide. Use those parts because they are excel-
lent, and ignore the VBXes of the Visual Solutions Pack because
they are not. Add a hardcopy or Adobe Acrobat version of the
Visual Component Library Reference, and you’ll have the essential
tools to do serious work with Delphi. ∆
NOVEMBER 1995 Delphi INFORMANT ▲ 46

Tim Feldman has more than fifteen years of experience in hardware and software
development. His most recent large project was designing and coding an event-driven
GUI, debugging, and calibration package for a high-speed almond sorting system. He
can be reached via the Internet at tfeldman@wheel.dcn.davis.ca.us.

TextF i le
Sometimes Good Things Take a Little Longer
“Sometimes Good Things
Take a Little Longer”

continued on page 49
The first wave of Delphi
books has passed. Now come
the more thorough books; the
ones that took a little longer
to get to market. These are
the books that professional
developers will use as stan-
dard references — the ones
that will end up with dog-
eared pages and smudged
CD-ROMs. The Delphi
Developer’s Guide by Xavier
Pacheco and Steve Teixeira is
one of those standards. And
if you’re serious about
Delphi, you need this book.

Steve Teixeira is a regular
contributor to Delphi
groups, and has written a
number of excellent articles
for various Delphi magazines
including Delphi Informant.
Both Teixeira and Pacheco
worked in Borland’s
Technical Support depart-
ment. Teixeira is still there,
and Pacheco is now with
TurboPower Software, mak-
ers of VCL add-in compo-
nents for Delphi. Their com-
bined experience is what
makes this book so valuable.
Manning the front lines at
Borland, they’ve answered
Delphi questions that most
of us haven’t even thought
of. Their book is packed with
valuable source code, discus-
sions, step-by-step proce-
dures, cautions, and tips.

As its name states, this guide
is for developers, not begin-
NOVEMBER 1995
ners. Its 900 pages are divid-
ed into three major sections.
The first section alone is
worth the price of the book.
In fact, it contains more
material than many other
complete Delphi books.

In twenty-two chapters, it
covers every major area of
Windows and DPMI pro-
gramming using Delphi
including: MDI applications,
GDI programming, DLLs,
OLE, DDE, the Windows
multimedia API, SQL,
Windows messages and
hooks, building custom com-
ponents, and testing and
debugging.

The authors use short exam-
ple programs to illustrate
each topic and offer useful
notes and tips. They cover
advanced operations such as
creating custom components
in a clear, step-by-step fash-
ion that’s just right.

First, they explain the
method they will use and
then present an example pro-
ject that explicitly illustrates
the method. In many places,
they point out the easiest
way to accomplish some-
thing. Then they bring up
advanced alternatives and
explain why you would need
to use them. And always,
there are examples — lots of
them — that are well-docu-
mented and ready to run.
In the second section, the
authors move beyond short
examples to begin teaching
the techniques used to build
real-world applications. In six
chapters, they create a system
resource monitor, an address
book, a calendar/scheduler/
alarm application, a phone
dialer/terminal application, a file
manager, and a time-tracker
application.

With these projects, you learn
development techniques as well
as the details of various Delphi
components. The authors
explain each project completely
and deftly insert advanced con-
cepts, such as deriving descen-
dant components.

In the final section, Pacheco
and Teixeira devote another
six chapters to developing
two large applications: an
inventory manager and a per-
sonal information manager.
As with the other examples,
they build each application
with an emphasis on real-
world development tech-
niques. They cover prelimi-
nary design issues and deci-
sions, develop the applica-
tion’s user interface, and then
add finishing touches.

In a brief Appendix, the
authors cover Delphi error
handling and error messages.
As usual, the material has a
practical emphasis, describ-
ing common causes of errors
and how to resolve them.

The text is well written. The
authors have a comfortably
direct style, informal without
being chatty. It’s neither aca-
demic nor simplistic — they
assume you understand com-
puters and programming,
and spend their effort in pro-
viding lots of examples and
useful tips. Their experience
in working with developers
gives them a refreshingly
practical tone.

Despite the book’s profes-
sional orientation, it’s accessi-
ble to serious amateurs. It
contains excellent chapters on
programming in Pascal and
Object Pascal, and it suc-
cinctly explains important
aspects of Windows program-
ming, with an emphasis on
providing useful examples.

The CD-ROM included with
the book is also valuable. In
addition to the source code,
Delphi INFORMANT ▲ 47

TextFile
A Developer’s Guide Targets Database Developers
“Mastering Delphi is Complete
and Insightful”

continued on page 49

“A Developer’s Guide Targets
Database Developer”

continued on page 49
Surveys indicate that most
developers use Delphi as a
tool to create database appli-
cations, and authors Bill
Todd and Vince Kellen cater
to this audience in Delphi: A
Developer’s Guide. This new
title from M&T Books pro-
vides the most comprehen-
sive guide to-date in chroni-
cling the complexity of
designing client/server appli-
cations in Delphi.

Todd and Kellen are well-
respected in the Paradox com-
munity and have strong back-
grounds in database applica-
tions. Their expertise definitely
comes through in the pages of
this book.

Beginning and intermediate
database developers will appre-
ciate the comprehensive cover-
age of the issues surrounding
database application develop-
ment. For example, it shows
that developing a database
application involves more than
working with TQuery and
TDataSource components. It
might well be necessary to deal
with issues such as database
integrity, data security, SQL-92
isolation levels, and implicit vs.
explicit transactions.

Of the book’s 33 chapters, 15
focus on database-related top-
ics. Although that makes for a
strong book on database
application development, it
also detracts to an extent from
Object Pascal programming.

For example, Chapters 23-28
and 33 concentrate on data-
base development concerns
(e.g. database integrity,
Microsoft SQL Server,
InterBase, and the Database
Desktop). Although crucial
database concerns, these are
not Delphi topics per se, and
NOVEMBER 1995
will have little appeal to devel-
opers not interested in devel-
oping database applications.
Despite its intense coverage
of database issues however,
Delphi: A Developer’s Guide
provides more information
about Object Pascal than
most third-party Delphi
books. Several chapters study
Object Pascal program struc-
ture, data types, expressions,
statements, procedures and
functions, and units.

However, the discussions of
some issues (e.g. linked lists
and PChar variables) are not
as detailed as those in Charles
Calvert’s, Delphi Unleashed
[Sams, 1995]. In fact, Delphi:
A Developer’s Guide can be
seen as a good companion to
Calvert’s Unleashed.
Delphi: A Developer’s Guide
also tackles other topics
important to advanced devel-
opers, including creating
DLLs, exception handling,
and calls to the Borland
Database Engine. The book
and accompanying CD are
filled with useful examples
and sample code. And there’s
no doubt that you’ll find code
(e.g. string manipulation pro-
cedures), that can easily be
used in your applications.

The book is well-written and
interesting. However, it
could have been better orga-
nized. For example, informa-
tion on error handling is
curiously sandwiched
between chapters that
describe the Query compo-
nent and “Building a
Database Application”. Also,
the advanced topic of creat-
ing DLLs is discussed before
an introductory chapter on
working with VCL compo-
nents. In addition, object-
oriented programming is
examined in three chapters
when one would have been
sufficient. Therefore, a cover-
Mastering Delphi is Complete and Insightful

If you intend to buy just one
book on Delphi, Marco
Cantù’s Mastering Delphi
deserves a place on your
short list of candidates. This
encyclopedic text weighs in at
1500 pages, covering the
Delphi spectrum from intro-
ductory concepts to advanced
programming techniques.

Cantù uses his unusually
high page count to great
advantage, providing more
complete treatments of the
topics than any other text
I’ve seen. Many discussions
show several ways to accom-
plish a particular task, with
welcome comments on the
tradeoffs.

Despite its length, the text is
highly readable and about as
entertaining as the material
allows. The author’s enthusi-
asm for Delphi is apparent and
infectious (as if Delphi users
needed much encouragement).
The first three chapters pro-
vide a general introduction
to Delphi. Chapter 4 offers a
concise overview of the
Pascal language, emphasizing
the motivation for various
elements of the language,
rather than just their syntax.
Chapter 5, “Object Pascal as
an OOP Language,” devotes
76 pages to object-oriented
programming concepts, and
includes the best treatment
of Dephi’s exception han-
dling I’ve seen.
An overview of the Visual
Component Library is fol-
lowed by 12 chapters (Part II
of the book, which fills 700
pages) that explore the indi-
vidual components in detail.

This same material is covered
in most other Delphi texts,
but Mastering Delphi goes far
beyond the standard enumer-
ations of properties and
methods. Examples are espe-
cially well chosen. One
example often serves to illus-
trate several key concepts
that are woven together
seamlessly.

Mastering devotes more than a
hundred pages to database
programming. A separate
chapter describes how to write
client/server applications, cov-
ering topics such as the Local
Delphi INFORMANT ▲ 48

TextFile

Sometimes Good Things Take a Little Longer (cont.)

project, data, and resource
files for all the book’s exam-
ples, it includes trial versions
of many Delphi-related com-
mercial utilities and VCLs.
Some of the VCLs are “crip-
pled” because they only work
while the Delphi IDE is run-
ning. A few of the advanced
projects in the text use these
special VCLs, but most of
the projects do not. There
are also several directories of
extra “bonus” source code for
NOVEMBER 1995

Mastering Delphi is
projects not described in the
text. I had some difficulties
with some of this extra
source code — missing class-
es and project files — but
only with code that was writ-
ten by third parties. All of
Pacheco and Teixeira’s code
that I tried worked properly.

An excellent setup program
serves as a hypertext guide to
the CD-ROM, and lets you
install the source code and utili-
Complete and Insigh
ties to your hard disk. Installing
the text’s source code took
about 14MB; the extra source
code took another 1.4MB.

To reiterate: If you are a seri-
ous Delphi developer or
want to become one, you’ll
find Pacheco and Teixeira’s
Delphi Developer’s Guide
indispensable. And well
worth the wait.

— Tim Feldman
tful (cont.)

e

-
e

A Developer’s Guid
Database Develope
Delphi Developer’s Guide
by Xavier Pacheco and
Steve Teixeira,
Sams Publishing/Borland Press,
201 West 103rd Street,
Indianapolis, IN 46290-1097;
phone: (800) 428-5331;
fax: (800) 882-8583.

ISBN: 0-672-30704-9
Price: US$49.99
907 pages, CD-ROM
e Targets
rs (cont.)
to-cover read may not be th
best approach.

Delphi: A Developer’s Guide
includes an obligatory chap-
ter on using ReportSmith
that is weak and perhaps the
least useful. ReportSmith
integration with Delphi, for
example, is only superficially
discussed. Finally, the book
offers just 16 pages to com-
ponent design, a subject
important to Delphi develop
ers. Although, to be fair, non
of the current third-party
books I’ve seen have covered
this subject adequately.

In conclusion, despite its
shortcomings, I recommend
Delphi: A Developer’s Guide
for developers interested in
designing database applica-
tions — especially
client/server applications.
There is simply no other
book like it on the market
when it comes to database
programming. Experienced
Delphi developers will also
find the Object Pascal discus-
sions and advanced chapters
complementary to Delphi
books they already have.

— Richard Wagner

Delphi: A Developer’s Guide
by Bill Todd and Vince
Kellen, M&T Books, 4375 W
1980 S; Salt Lake City, Utah,
84104 (800) 488-5233.

ISBN: 1-55851-455-4
Price: US$44.95
820 pages,
CD-ROM
InterBase Server, InterBase
server tools, and the Visual
Query Builder.

Part III, “Advanced Delphi
Programming”, goes well
beyond the scope of most
other Delphi books. One
chapter covers techniques
such as timers, painting
methods, and background
computing. Another provides
excellent treatment of debug-
ging methodologies. Still oth-
ers discuss the use of
Windows resources, printing
techniques (including
ReportSmith, which Cantù
disparages for its limitations),
file support, data exchange
(Clipboard and DDE), OLE,
and multimedia devices.

Mastering concludes with a well
constructed chapter on creating
components and a shorter one
on using DLLs from Delphi.
Appendices provide a some-
what formal discussion of
OOP principals and a too-brief
introduction to SQL.

An accompanying CD-ROM
provides the code for all the
examples in Mastering. In
addition, it offers a useful set
of components, including free-
ware, shareware, and demon-
stration versions of commer-
cial products.

There is also a directory con-
taining tools, and another
with the text of several
Delphi-oriented magazines
(including the Premiere issue
of Delphi Informant).

The book is not without
minor flaws. Some of the
introductory material seems to
switch too rapidly from ele-
mentary to difficult material. A
few terms that may be unfa-
miliar to new users (e.g. “heap”
on page 111 and “call stack”
on page 213) are used without
definition. I noted minor
inconsistencies among variable
names in one set of sample
code fragments (page 109).

Finally, I felt that some
important warnings, notably
one about memory leakage
(on page 217) receive less
emphasis than they deserve.

Flaws notwithstanding, this is
by far the best Delphi book I
have seen. No single book
will transform a novice into a
Delphi guru overnight, but
one or two careful readings of
Mastering Delphi will give you
a good head start on the road
to guruhood.

— Larry Clark

Mastering Delphi by Marco
Cantù, SYBEX Inc., 2021
Challenger Drive, Alameda,
CA 94501; (800) 227-2346 or
(510) 523-8233.

ISBN: 0-7821-1739-2
Price: US$49.99
1,503 pages, CD-ROM
Delphi INFORMANT ▲ 49

	Table of Contents
	Editorial
	Delphi Tools
	New VB Translator for Delphi
	ReportPrinter Version 1.1 for Delphi Released
	SuccessWare’s Apollo Pro Adds SDM to Apollo
	New Widgets Collection from Mobius

	Newsline
	Updates Available for Delphi and Delphi Client/Server
	InterBase Workgroup Server for Unix Ships
	Supreme Court to Review Lotus vs. Borland Ruling
	US Army to Use InterBase
	DB/EXPO ’95 Heads to New York
	Database and Client/Server World Nears

	Think Objects, Not Reuse
	OOP in the Business World
	The Reuse Battle
	Reuse Out of the Box
	Think Objects
	The Inheritance Solution
	The Polymorphism Solution
	Conclusion
	Listing One — TStandardButton .PAS File
	Listing Two — Polymorphism in Action

	Power and Safety
	Pascal Emerges
	The Subrange Type
	The Enumerated Type
	The Set Type
	Set Theory
	Not Just Data Types
	Set Storage
	Set Internals
	A New Data Type?
	Nearing the End
	Conclusion

	Cultural Differences
	The Object Model
	Memory Management
	Type Checking
	Exception Handling
	Modularity
	Portability
	Conclusion

	The BatchMove Component
	Using BatchMove
	Creating a Table
	Using a Table as a Source
	Deleting Records
	Moving Records to an Existing Table
	Updating Tables
	Mapping Tables
	Conclusion

	The ObjectBrowser
	Symbols
	The ObjectBrowser
	The SpeedMenu
	Enabling and Configuring the ObjectBrowser
	Using the ObjectBrowser
	Conclusion

	One Bit at a Time
	Support for Serial Communications: DOS vs. Windows
	Serial Communications: A Primer
	Start, Stop, and Data Bits
	Baud Rate
	Parity
	Flow Control and Handshaking
	Sidebar 1 - What Is an Interrupt?

	The PC’s Serial Port
	Windows API Functions
	Sidebar 2 - Masking Bits with the AND Operator

	Basic Serial Communications with Delphi
	Conclusion

	Borland RAD Pack for Delphi
	Installation
	The VBXes
	The VCL Source Code
	The Turbo Debugger
	The Resource Workshop
	The Resource Expert
	The Patches
	The Object Pascal Language Guide
	The (Missing) VCL Reference
	Conclusion

	TextFile
	Sometimes Good Things Take a Little Longer
	A Developer’s Guide Targets Database Developers
	Mastering Delphi is Complete and Insightful

